
6. Gravitational Potential and Tidal Forces 
 
Gravitational Potential  

We can write a general expression for the gravitational potential, U, due to a body of arbitrary shape 
and density distribution by treating it as an accumulation of a large number of small masses, dm, 
each contributing potential dU, and then integrating over the masses.  

We remember from basic gravitational theory that the gravitational potential U at a point P is the 
work done in moving from P to infinity. A point mass M gives rise, at a distance r, to a potential:  
           U = GM/r 

This same equation can be used for a uniform sphere of mass M, where r is taken as a point outside 
the sphere. (i.e. the effect of the sphere is the same as if the mass were concentrated at its centre). 
For a point at a radius r inside the sphere, the mass M to be used in the equation is that if the 
material inside the radius r (parts of the sphere outside r have no effect - notice the analogy with 
electrostatics theory). 

The same equation above can be used for the potential outside a spherically symmetric sphere 
which is a rough approximation for the case of the earth.  

If we want to generalise, however, and look at arbitrary shapes and density distributions, we have to 
integrate over the effve to integrate over the effects of each small part of the body. Let us take a 
body of arbitrary shape in a (x,y,z) coordinate system:  

 

 

The potential at a point P, distance r and direction cosines l,m,n from the centre of the coordinate 
system, is the sum of the effects of all the elements of the arbitrarily shaped body. One such 
element, P', is at position x,y,z, distance r' from P and [ro] from the centre. Thus U is given by:  

 



 

 

We can substitute for [ro] and [psi] using the direction cosines and (x,y,z) values, and expand the 
bracket using the binomial expansion. Then to order [ro]2/r2 we have:  

 

 

So far we have kept our derivation totally general. We can take O as the centre of mass without 
losing generality. This is defined as:  

 

 

We can also take Oz as the polar axis without losing generality. Then we have the moment of 
inertia about Oz = C given by:  

 



 

We will now examine the simplification we can bring about by assuming a degree of symmetry in 
the attracting body, and at this point in the calculation we lose generality in favour of simplicity. 
We start by assuming Oz is an axis of symmettry. Then the momn axis of symmettry. Then the 
moments of inertia about Ox and Oy (A and B) will be equal:  

 

 

giving:  

 

 

We have also reference axes as Principal Axes:  

 

 

which leads us to the simplification:  

 

 

but l2+m2+n2 = 1, so l2+m2 = 1 - n2 and so:  

        U = GM/r + G/2r3[(C-A) + 3n2(A-C)] 
 
          = GM/r + G/2r3(C-A)(1-3n2) 

now,  



 

 

so  

 

 

where J2 = (C-A)/MRe
2  

Re is the equatorial radius.  

In general:  

 

 

P2, P3, etc. are Legendre polynomials.  

GM can be obtained from the orbit of a natural satellite or an orbiting spacecraft. Any planet with a 
natural moon gives a method for getting the mass. For the Earth GM = 3.98603 (+/- 3) 1014 m3s-2. In 
many cases for the planets the value of GM is known more accurately than M itself because of the 
uncertainty in the value of g n M itself because of the uncertainty in the value of g the gravitational 
constant, and this is the limiting factor!  

The values of Ji for the earth were first determined from surface measurements. This gave J2 and an 
uncertain J4 - uncertain for the same reason that J3 was not quoted; there was a lack of stations in the 
southern hemisphere (and there was insufficient data).  

Since the advent of satellites there has been a 20x improvement in accuracy of the Ji's and the odd 
terms are now also obtained.  



Thus we have  

     J2 = 1082.64 (+/-0.1) 10
-6     J3 =   -2.56(+/-0.07) 10

-6 
     J4 =   -1.52 (+/-0.3) 10

-6     J5 =   -0.15(+/-0.03) 10
-6 

     J6 =    0.57 (+/-0.2) 10
-6     J7 =   -0.44(+/-0.03) 10

-6
 

All values of Jn (n>2) are of O(10-6). How many J's can be determined depend on how many 
satellites there are and how they cover the planet.  

Meanings of the J terms  
The Ji terms are dimensionless constants showing the relative sizes of the terms in the latitudinal 
expansion of the geopotential in Legendre Polynomials. Basically, the i denotes how many maxima 
the (axially symmetric) term has, as shown here:  
 

 

 

Note that this is the relative size of the geopotential term, it is not necessarily the shape of the body 
- a density variation can cause these variations in the geopotential without the body being mis-
shapen at all. (Gnereally it will be a mixture of shape and density variations.)  
 
Earth Tides  

We can look at the deformation of a primary body being acted upon by a secondary:  



 

 

The gravitational attraction at A due to M depends on R'. The acceleration due to the moon, gA, is 
(gAr,gAp) in the r and psi directions shown on the diagram. Now if P is the angle psi shown on the 
diagram, and P' the angle psi-dashed:  

     gAr = (GM/R'
2) cos P'   gAp = -(GM/R'

2) sin P' 

and the Tidal Acceleration is the difference between the acceleration of the point A and the 
acceleration of the earth's centre due to the moon. Hence:  

  del-gr = gAr - gEr = (GM/R
2)[(R2/R'2) cos P' - cos P] 

  del-gp = gAp - gEp = (GM/R
2)[sin P - (R2/R'2) sin P'] 

Eliminate R' and P' using RcosP = R'cosP' + r and RsinP = R'sinP' plus R'2 = R2 + r2 - 2RrcosP  

so:UP> - 2RrcosP 
 
 
so: 
     del-gr = (GM/R

2)[R2(RcosP-r)/R'3 - cosP] 
            = GM[(RcosP-r)/(R2 + r2 - 2RrcosP)3/2 - cosP/(R2] 
            = GM/R3[(RcosP-r)/(1+r2/R2 - 2rcosP/R)3/2 - RcosP) 
            = GM/R3[(RcosP-r)(1+3rcosP/R) - RcosP]  to O(r/R) 
            = GM/R3(3rcos2P - r) to order r/R 
            = GMr/R3(3cos2P-1) 
 
     del-gp = (GM/R

2)[sinP - sinP/(1 + r2/R2 - 2rcosP/R)3/2] 
            = GM/R3(RsinP - [RsinP][1 + 3rcosP/R])  to order r/R 
            = -3(GM/R3)rsinPcosP 

So, we can say:  

 



 

Where  

 

 

Notice that these terms have a semi-diurnal nature. They are symmetric about the 0-180 degrees line 

 

 

As the earth rotates an observer is carried +,-,+,- with respect to an Earth circular in cross-section. 
Note in the plane perpendicular to the diagram there is no tidal effect. Thus, though the shape is the 
same as that given by the J2 gravitational term above, it is 2-dimensional rather than symmetric 
about the z-axis.  

 
Earth as an elastic body  

Chans an elastic body  

Changes in g give a deformation similar to the above. (Note we have calculated the changes in 
potential height: this will only translate into a change in shape if the body is deformable.) If 
perfectly elastic the elongation axis would be towards the deforming body; otherwise there will be a 
phase lag.  

For the solid earth the phase lag is small, though not for the sea tides. The reason for the small solid 
earth lag is because the period of natural oscillation is <<0.5days (it's actually around 57 minutes) 
so the earth can continuously and rapidly adjust. The natural period of the ocean tides is several 
days.  

If we assume the oceans could adjust then the level of water would rise to a point of static 
equilibrium.  



If the marine tide = del-H then the work done against gravity would be g(del-H)=-W  

For the solid earth work is also done in the elastic deformation and so the height of the earth tide 
delHs is less than del-H  

If del-Hs = h(del-H) = h(-W/g) then h is independent of r and psi and is called the Love Number.  

The liquid surface remains an equipotential. On a solid surface there is an additional potential due 
to the deformation of the earth and the consequent redistribution of the mass. We expectthis to be 
proportional to W(r,P) - say kW. k is another Love number.  

A liquid surface covering the globe would remain ring the globe would remain an equipotential and 
be lifted (1+k)W/g relative to the centre of the earth,or (1+k-h)W/g relative to the sea bed. We can 
measure h and k by observing g at the surface.  

Variations of g  
      g = g0[1-(2W/rg0)(1 - 3h/2 + k)] 

W is at the surface a semi-diurnal variation in g pf c. 2 in 107. Changes in g of 1 in 1010 or 1 in 1011 
can be measured. (1 + 3h/2 + k) is c. 1.1 to 1.26%. Vertically (1 + k - h) = 0.54 - 0.82. This then 
gives k = 0.28 and h = 0.6. Thus the rise and fall of the earth's surface is half that of the ocean - 
several metres!  

 
 
Effect of tidal torque on satellite and primary  

If we imagine a satellite in a prograde orbit about a (pro-grade) rotating planet:  

 

 

A tidal bulge is set up on both bodies. If the planet rotates faster than the satellite orbits then the 
bulge can be carried ahead of the sub-satellite point by the primary's rotation:  

 

 



(The angle L is usually small, of order 1 degree.) The bulge exerts a force on the satellite which has 
a tangential component speeding it up and causing it to move to a higher orbit:  

 

 

The satellite in return slows the planet's spin rate:  

 

 

So, the moon moves away from the planet and the planet rotation rate slows until either the satellite 
is lost or the spin and orbital periods become the same. Much of the energy is dissipated in the 
bodies as heat. Thus we see Io, the closest body to Jupiter, and to some extent Europa, the next, 
subject to large amounts of tidal heating. This is probably what supplies the power for the volcanic 
activity on Io, and may be keeping some of the ice on Europa liquid.  

 
Resonant Orbits Besides spin-orbit resonances, evolution of satellite orbits in a multi-satellite 
system can lead to orbit-orbit resonances between different satellite (or vetween satellites and ring 
particles for planets with rings). Thus Io, Ganymede and Europa have resonant orbital periods. We 
can understand this if we realise that the primary-satellite tidal torques will cause the satellite orbits 
to evolve gradually. Eventually they will evolve (randomly) until two satellites have resonance 
periods. Assuming for simplicity that one is in a circular orbit:  

 

Whenever the satellites come near to conjunction the outer satellite will get a "tug" in the same 
direction on every orbit. The overall effect of these increments - which will be in one direction on 



one side of the orbit and in the other direction on the other side - will be toe other side - will be to 
stabilise the outer satellite into a resonant period with the inner satellite. (See Lewis for more 
details).  

 
The Roche Limit  

A satellite cannot approach its primary too closely (the Roche limit) or stray too far (the instability 
limit) without break-up or loss to the system respectively. The Roche Limit is the point within 
which a satellite would be torn apart by tidal forces if the only force hloding it together is its self-
gravity. Taking a primary mass M, radius R, a distance d from its satellite mass m radius r (where 
M>>m) we have:  

 

If the satellite is large enough (r greater than about 500km) its self -gravity dominates other cohesive 
forces. It will be torn apart if it approaches the primary closer than:  

 

which is known as the Roche Limit, after the mathematician who first derived it. For our Moon d = 
2.44(5.5/5.3)1/3 or about 2.9RE - around 18,500 km.  

Roche's calculation was complicated by the fact he took into account the tidal distortions in the 
satellite just before break-up. We can get a similar (though not the "full") term if we just consider a 
rigid spherical satellite. Then the centripetal acceleration of the orbit is w2d where w is the angular 
velocity (radians/s)of the orbital motion. The gravitational accelmotion. The gravitational 
acceleration from the primary is GM/d2, so:  

     w = (GM/d3)1/2 

The differential gravitational acceleration between the centre of the satellite and the outside edge is  

     A = (GM/d2) - GM/(d+r)2  = approx 2GMr/d3 

The differential centripetal acceleration B between the same two points is:  

     B = w2(d + r) - w2d = w2r = GMr/d3 

So  

      A + B = 3GMr/d3 



This must be balanced by the satellite's self-gravity GM/r2. Disruption occurs at d = r(3M/m)1/3.  

Given the densities of the primary and satellite:  

 

then d becomes  

 

where as we can see we have the right form of the equation but the wrong constant because of our 
simplification.  

The large natural satellites orbit beyond the Roche Limit of the primaries, though some of Saturn's 
moonlets are within it. These later must have other adhesive forces holding them together, as a low-
orbiting artificial satellite of earth would. Saturn's rings are entirely within the Roche Limit, as are 
those of Jupiter, Neptune and Uranus.  

Rings  

All the gas giants have rings, though only Saturn's are optically thick seen from earth. (Beware the 
beguiling solidity of the images of the Jovian, Neptunian and Uranian rings seen on Voyager 
imagery - these pictures have usually been image-enhanced to bring out the contrast. The rings are 
nothing like as bright or obvious, even in-situ, as they seem on these photographs.) The rings of 
Uranus and Neptune were discovered telescopically before space probes reached the planets, but it 
was only with the details Voyager images that we could appreciate their complex natures. The rings 
in detail are often seen to have fine detailed structure, with well-defined gaps and even in at least 
one case a "braided" structure. These fine features are often the result of resonance interactions with 
satellites either embedded within the ring system, or just outside the edges of it. These satellites are 
said to move in marshalling and shepherding orbits. See Lewis for images showing this behaviour 
in more detail.  

This same interaction between rings and satellites also explains why, of example, the outer edge of 
the Jovian ring is sharp, while its inner edge is much more diffuse. It probably also explains the 
"spoke-like" structures seen in Saturn's rings. A detailed comparison of the ring systems of all the 
major planets (see, fig VI.23 of Lewis for full details) shows that the outer edge of Jupiter is 
coincident with the sub-satellite 1979J1 at about half the orbital distance from the primary as the 
"classical" moon Amalthea. Saturn's F ring is shepherded by satellites 1980S26 to 1980S28. (It is 
this ring which is "braided".) Saturn's G ring is between 1980S1-S3 and Mimas, while the satellite 
Enceladus is embedded in the diffuse E ring. Uranus' nine rings are all inside the innermost satellite 
1986U8. In the case of Neptune there are subsatellites both embedded in, and forming the edge of, 
its four rings.  

Note that the smaller sub-satellites discovered by the Voyager spacecraft are often grouped together 
(like 1980S26-28) in resonant orbit groupings. It is difficult to tell if these satellites are of 



independent origin, or the remnants of the same bodies that broke up to form the rings. (It seems 
most likely that the rings formed due to break-up of bodies coming within the Roche Limit rather 
than their being the residue of material left in the system which failed to accrete - the rings' 
lifetimes are too short for the latter.)  

The interesting structural differences between the rings of the different planet's are likely to exercise 
the minds of planetary dynamicists for some years to come. (For example, Saturn's rings are broad 
with small gaps between them, whereas Uranus' are like the negative image of that - thin rings 
separated by large gaps. Uranus' rings are also eccentric and not exactly coplanar.)  

 
Loss of satellite to a perturbinof satellite to a perturbing body  

If we have a satellite mass m, at a distance d from its primary mass M1, then a second large body of 
mass M2 distance D from M1 produces a perturbing acceleration on m of:  

 

 
    A - B = [GM2/(D-d)

2] - GM2/D
2 

 
  or approximately   2GM2d/D

3
 

between orbiting body and primary (d << D). The gravitational aceleration b is given by:  

     b = GM1/d
2 

Thus, the instability limit, when the perturbation starts to be of the same order as the primary's 
effect, is given by:  

     d = (M1/2M2)
1/3D 

as long as M1 << M2. If M1 >> M2 we must use the exact relation:  

    d3(2D-d) = (M1/M2)D
2(D-d)2 

If we take the earth-moon system with the sun as perturber then d is about 1.7 106 km, four times 
the current orbital radius.  

 
The three-body problem  

The equations of motion of two bodies moving under their mutual gravitational attraction are 
soluble algorithmically. However, as soon as a third body is added to the scenario, the equations 
become generally insoluble algorithmically and we are fonsoluble algorithmically and we are forced 
to numeric solutions. We shall look at the case of a third body of negligible mass moving in the 
gravitational field due to two larger bodies: this would be the case for, say, a space probe or a small 
satellite moving under the influence of the Earth and Sun.  



We take "universal" axes X, Y, Z, in which one large body, mass m0 is the centre of coordinate 
system x, y, z, centred on m0 and parallel to X, Y, Z (see diagram). At a distance r1 from m0 is 
another large body, mass m1. A small body of mass m, negligible compared to m0 and m1, is at 
distance r from m0 and [ro] from m1.  

 

 

Now the equation of motion of m can be broken up to three components. In the X direction we 
have:  

       m d2X   =   G m m0 (X0 - X)  +  Gm m1 (X1 - X) 
         __         _____  ______      ____  ______ 
         dt2          r2      r         [ro]2   [ro] 
 
while for m0 the equation of motion is: 
 
       m0 d

2X0   =   G m m0 (X - X0)  +  Gm0 m1 (X1 - X0) 
          __         _____  ______      ____  ______ 
          dt2          r2      r       2  r      r1

2    r1 

We can now divide the first by m, and the second by m0, and subtract the second from the first, 
(noting that x = X - X0, y = Y -Y0 etc) to get:  

  

         d2x  =  -G(m0 + m)x  +  Gm1(x1 - x)  -  Gm1 x1 
         __       _______        _______         ____ 
         dt2          r3            [ro]3          r1

3 
 
so 
 
         d2x  +  G(m0 + m)x  =  Gm1(x1 - x)  -  Gm1 x1 
         __       _______        _______       ____ 
         dt2         r3           [ro]3         r1

3 
 
                              =  0  if m1=0 



This last case where m1=0 takes us back to the simple two-body problem. Where this is not equal to 
zero however, we have:  

 

 

where  

 

 

R is called the Disturbing Function. We thus now have an equation which looks like the simple 
two-body problem but with a disturbing factor built in which we can use in numerical solutions. In 
the case of a body moving through the solar system in the Sun's gavitational field, but susceptible to 
disturbances from other planets we can take them all into account by adding a disturbing function 
for each, and then we replace m1 by mi and sum over i. We start with initial position and velocity 
and then iterate forward numerically. The orbits of the planets are calculated like this, as are the 
comets (Cowell's method). If over a long stretch of orbit the integration is over something very near 
to an ellipse (i.e un-acted upon over a long stretch) then there is another method called Encke's 
method which is used.  

 
The Restricted three-body problem  

Although the three-body problem is not generally soluble algorithmically, we can tell much about 
the behaviour in restricted situations. The usual "restricted" three-body problem assumes that the 
third body (the motion of which we are interested in) is small in comparison to the other bodies as 
in the example above, but here the two main bodies are comparable in size and we look at the 
motion of the third in the frame rest of the two-body system (which must be a rotating frame where 
the bodies rotate about their common centre of gravity).  



So, taking axes centred on the centre of gravity of the system, containing bodies mass m1 and m2, a 
rotating frame in which m1 and m2 are fixed, we have a small body m very small compared to m1 
and m2 and m2, at position distance r1 from m1 and r2 from m2:  

 

The energy equation, given that m is at (eta, epsilon) in this frame, is given by:  

 

where the first term is the kinetic energy, the second the energy due to the centrifugal force and the 
next two the potential energy terms. Note the use of the rotating frame means we have to add the 
second term to the usual KE/PE energy equation.  

There is no term due to the "Coriolis" Force as it acts at right angles to the motion and hence does 
no work (and does not change the overall energy). Putting the "constant" equal to:  

 

For a given value of the parameter we can define limits to the areas m can be in given its initial 
energy. The defining boundary will be v2=0, where v is m's velocity. This is because v2=0 is the 
maximum value of the expression above.  

For a given lambda the zero velocity curve describes the limit of where m is allowed. For a given 
lambda, an increasing rotation rate or decreased r1, r2 can be offset by increasing the amplitude of 
K.E. term - i.e. velocity rising. But where the rotation and G terms drop below the level of the 
constant (lambda term), then the kinetic energy term would have to go negative - that is imaginary 
velocity, which is non-physical. So these areas are not allowed. Lambda will be defined by the 
initial overall energy of m.  

We can find the zero velocity curves as follows:  



 

Consider the motion of either body about the centre of gravity:  

 

If we now take large values of lambda we see this can only be made (1) with very large x+y so that 
x2+y2 is large (2nd and 3rd terms would be small). We then have an equation tending towards 
x2+y2=C i.e. a circle. It can also be satisfied with (2) x and y very small so the 2nd and 3rd terms are 
large (and the first is then very small).  

The zero velocity curves are shown in the figure below as C subscripted with lambda and Ln where 
n is 1 to 3. The L3 case [case (1)] is the one with x and y large - i.e. the outside circles. Case (2) 
with x and y small corresponds to the L1 and L2 cases, circles centred around m1 and m2. That this 
is so we can see by looking at the 2nd and 3rd terms as x,y become small. The circle around m1 is 
the case where:  

 

so we tend to a circle:  

 

centred at:  



 

and similarly around m2:  

 

and the equation goes to:  

 

centred at:  

 

For smaller lambda the outer circle shrinks and the inner ones grow. Notice the "allowed" areas are 
outside the outer circle and inside the smaller ones. (Think what this means in terms of energy.) 
Eventually either the inner circles touch or one of the inner circles will touch the outer circle. In the 
case of the Earth-Moon system the inner circles touch, the limiting case being shown by the curve 
in the figure below labelled C with a subscript lambda and 1. In the inner curve the figure-of-eight 
has its crossover on the x axis. Note there is also a limiting outer curve as shown. With this value of 
lambda it is possible to go from the vicinity of m1 to that of m2 through the crossover (with zero 
velocity).  

As lambda decreases further the crossover point L2 turns into a neck. (Note this curve is not the 
trajectory of a vehicle or body - it merely defines the boundary to where m can go.)  

Eventually as lambda gets smaller the case of curves C with subscript lambda and 2 is reached 
where inner and outer circles meet, initially at point L3.  By curves C with subscript lambda and 3 
the "necks" are open at both ends and only the shaded areas are "not allowed" (energetically) to the 
body. These regions shrink as lambda gets smaller, and eventually end up as points L4 and L5. For 
lambda less than this limiting value nothing can be plotted, and the body m has so much energy it 
can move freely anywhere in the system. Small lambda means large initial energy. L1, L2, L3, L4 
and L5 are known as the Lagrangian points. The points L4 and L5 form equilateral triangles with 
m1 and m2.  



 

 
 
Another way of looking at the Lagrangian Points  

... is to consider the balance of forces. These are all points of "equilibrium" where a body m would 
have zero velocity in this frame of reference. Thus at L2 the centrifugal force on m plus the 
attraction of m2 is "balanced" by the attraction of m1. At L1 the centrifugal force away from the 
centre of gravity is balanced by the attraction of m1 and m2. Similarly for L3. These are points of 
unstable equilibrium in the m1m2 line, since we see any movement along the line destroys the 
balance of forces. (Example: take L3. If the body m is moved to larthe body m is moved to larger x 
the centrifugal force rises while the attraction of m1 and m2 falls, so it continues to accelerate 
outwards. Movement towards m2 means attraction to m1 and m2 rises and centrifugal force falls, so 
the body continues to accelerate towards m2. Satisfy yourself that L1 and L2 are similarly points of 
unstable equilibrium.) Note that we have considered motion along the line m1m2 only. In the y 
direction there may be a certain degree of stability - and "halo" orbits have been used for spacecraft 
orbiting in the y-z plane about one of the L1, L2,L3 points.  

Points L4 and L5 are ones where the centrifugal force is balanced by the resultant of attractions 
towards m1 and m2. These points can have a certain amount of stability since any movement away 
from the centre of gravity of the system will tend to lead to circumferential movement due to 
Coriolis forces, and these will tend to swing the body into an orbit where it oscillates around L4 or 
L5 in the rotating frame (see Lewis for a more detailed arm-waving explanation of this).  

For the 3 Lagrangian points on the x axis we have:  



 

and we can use this property to define an iterative for solving for L1, L2 and L3 by successive 
approximation.  
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