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Condensed Matter Physics Option – C3 

Condensed-matter Structure and Dynamics 

 

Formal Syllabus* 

Symmetry. Crystal structure, reciprocal lattice, Brillouin zones — general treatment for non-
orthogonal axes. X-ray, neutron and electron diffraction. Disordered materials.  
Lattice dynamics. Measurement of phonon dispersion. Thermal properties of crystals. Phase 
transitions. Soft modes.  
 
Electronic structure of solids. Semiconductors. Transport of heat and electrical current. Fermiology. 
Landau quantisation. Low-dimensional structures.  
 
Lorentz oscillator model. Optical response of free electrons and lattice. Optical transitions in 
semiconductors. Excitons.  
 
Isolated magnetic ions. Crystal field effects. Magnetic resonance. Exchange interactions. Localized 
and itinerant magnets. Magnetic ordering and phase transitions, critical phenomena, spin waves. 
Domains.  
 

Conventional and unconventional superconductors. Thermodynamic treatment. London, BCS and 

Ginzburg–Landau theories. Flux quantization, Josephson effects, quantum interference. 

*The sections marked in bold are covered in the “Structure and dynamics” section of the C3 course. 

General 

 Particularly important material and equations are enclosed in boxes. 

 Students should be familiar with “boxed” equations and should be able to apply them.  

Equations in double-thickness boxes should be memorised.  An equation sheet will be 

provided for the other equations if they are required to solve exam questions.  

  

Lecture 1 - Symmetry in the solid state – part I: Simple patterns and groups 

 Elements of group theory 

 Operator composition and conjugation – equivalence classes. 

 Discrete symmetries around a fixed point: proper and improper rotations. 

 The symmetry of the translation set in 2 dimensions: 2D lattices. 

 2D “wallpaper” groups. 

 

At the end of this section, the students should understand the concepts of symmetry operators, their 

composition and the important concept of conjugation, which will enable them to construct classes 

of symmetry-equivalent operators (conjugation classes).  Using this knowledge in a practical way, 

they should be able to recognise the 10 2D point groups and the 17 wallpaper groups.  Opportunities 

for exam questions will include:  composition and conjugation of symmetry operators; identification 
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of symmetry elements in a pattern (e.g., an Escher drawing); interpretation of the group symbols 

(e.g., “p4gm”). 

Lecture 2 - Symmetry in the solid state – part II: Crystallographic coordinates and Space Groups 

 Crystallographic coordinates 

 Distances and angles 

 The “dual” basis: construction and applications. 

 Point groups in 3D. 

 Crystallography in 3D: screws, glides, notation in the International Tables for 

Crystallography. 

At the end of this lecture, the students should understand crystallographic coordinates and be able to 

measure distances and angles for generic (non-orthogonal) lattices .  They should be able to 

construct the dual basis and be able to calculate dot products between real-space and reciprocal-

space vectors.  They should also understand the new generalised rotations and roto-translation 

symmetry operators in 3D and should be able to interpret the key symbols on the ITC entry for space 

groups.  Opportunities for exam questions will include:  a variety of calculations employing the metric 

tensor; demonstrate understating of the 3D symmetry operators; use of the International Tables in a 

practical way, e.g., to calculate equivalent positions. 

Lecture 3 - Symmetry in the solid state – part III:  The reciprocal lattice and its symmetry 

 Fourier transform and the Reciprocal Lattice. 

 The “weighed” reciprocal lattice and its symmetry – “normal” and “anomalous” conditions. 

 Laue classes. 

 Extinction conditions. 

 Examples of “real” crystal structures. 

 

At the end of this lecture, the students should understand that Fourier transforms of periodic 

functions in real space are non-zero only at the reciprocal-lattice nodes.  They should also understand 

why “extra” reciprocal lattice vectors are generated by the use of “conventional” unit cells, and why 

the Fourier transforms are zero on these vectors.  They should understand the concept of atomic radii 

and how it leads to different types of crystal structures.  Opportunities for exam questions will 

include:  calculation of extinction conditions for specific Bravais lattices and operators. 

 

 

Lecture 4 - Symmetry in the solid state – part IV:  The reciprocal lattice and its symmetry 

 The Wigner-Seitz and Brillouin constructions. 

 Brilluin zones and the symmetry of the band structure 

 

Students should be able to understand and carry out in a practical way the Wigner-Seitz and Brillouin 

constructions. Opportunities for exam questions will include: specific examples of the Wigner-Seitz 

and Brillouin constructions; symmetry constraints on group velocities at different points of the 

Brillouin zone.  
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Lecture 5 - Wave and particle beams 

 

 Elements of the theory of scattering of X-rays: scattering from a quasi-free electron, and 

from an atom – atomic scattering factors. 

 Polarisation of X-ray beams and its effect on the scattering amplitudes. 

 X-ray absorption and anomalous scattering. 

 Scattering of neutrons – basic principles and formulas. 

 Production and detection of X-rays and neutrons – synchrotrons and neutron sources. 

 

At the end of this lecture, the student should understand and be able to apply the basic equation 

governing the scattering from individual centres (atoms for X-ray and electron beams, nuclei and 

unpaired electrons for neutrons).  They should also have a general understanding of how these 

beams are attenuated in condensed matter and of the main techniques employed to produce these 

beams and detect them.  It is very important that the students develop a good understanding of the 

length-scales and orders of magnitudes involved in these phenomena.  Opportunities for exam 

questions will include: application of the scattering formulae, often in the context of the calculation 

of a diffraction cross section (lecture 5);    general knowledge of the relevant material. 

 

Lecture 6 – Scattering geometries 

 

 Cross section for a small “perfect” single crystal. 

 The effect of atomic vibration - Debye-Waller factors. 

 Laue and Bragg equations. 

 Scattering geometries and geometrical factors. 

 Elastic and inelastic scattering triangles. 

 Structural solution from diffraction data – the phase problem. 

 Basic ideas of dynamical scattering. 

At the end of this section, the students should be able to understand the use of formulas to calculate 

cross sections, scattering rates in different geometries. They should be able to determine crystal 

orientations and scattering angles to observe particular brag peaks.  They should also understand the 

limits of the kinematic approximation.  Opportunities from exam questions will include: employing 

the scattering triangle construction to calculate rotation angles to reach scattering conditions; 

calculating structure factors; calculating scattering rates in different geometries from formulas 

provided in equation sheets. 

Lecture 7 – Defect in crystals and non-crystalline solids 
 

 Crystal size effects. 

 Diffuse scattering. 

 Extended defects - dislocations. 

 Scattering from liquids and glasses.  

At the end of this lecture, the students should understand how deviations from perfect periodicity 

affect the cross sections – in particular how scattering is generated outside the reciprocal lattice 
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nodes.  The main equations for disordered materials scattering will also be presented.  Opportunities 

from exam questions will include: knowledge of the specific topics; application of the relevant 

equations (provided in equation sheets) to solve realistic problems. 

Lecture 8 – Introduction to lattice modes and their symmetry. 
 

 Lattice modes: a unified way to describe electron densities, wavefunctions, displacements 

and vibrations, magnetic structures and much more. 

 Decomposing generic modes into normal modes. 

 A simple example: normal modes of a square molecule and their applications to solve the 

dynamical equation. 

 Extended lattices: mode decompositions of lattice fields. 

 Normal modes of vibration of a crystal. 

 Techniques to measure molecular and lattice dynamics: Infra Red absorption/reflectivity; 

Raman scattering; Inelastic Neutron Scattering. 

 Selection rules: IR and Raman-active modes. 

 Translational symmetry: the Bloch theorem. 

 Generalisation of the Bloch theorem: the symmetry of the Hamiltonian. 

  

At the end of this lecture, the students should appreciate the importance of symmetrised modes in 

various classes of problems, and be able to use symmetry in an intuitive way to solve simple 

problems. Opportunities from exam questions will include:  construction of simple invariant modes.  

Symmetry analysis of a specific problem (e.g., the vibration of a molecule) leading to predictions of its 

Raman, IR and neutron signatures (selection rules). 

 

Lecture 9 – Phonons and anharmonic phenomena. 
 

 Normal mode quantization. 

 Use of the Brillouin zone construction to classify phonon modes. 

 Linear momentum vs. crystal momentum. 

 Beyond the harmonic approximation. 

 Thermal expansion 

 Thermal conductivity 

 Normal and Umklapp processes 

At the end of this lecture, the students should be able to employ the Wigner-Seitz and Brillouin 

constructions (lecture 3) to classify phonon modes.  They should understand the difference between 

linear momentum and crystal momentum, and how it can lead to a variety of phenomena, 

particularly related to electron-phonon and phonon-phonon scattering and to the deviations from the 

harmonic approximation. Opportunities from exam questions will include: application of the concepts 

and formulae to solve realistic problems. 

 

Lecture 10 – Phase transitions. 
 

 An example of a phase transition illustrated with an Escher drawing. 
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 Symmetry changes and their effects on the macroscopic properties of a crystal:  the 

Neumann’s principle. 

 Electrical polarisation and magnetisation.  Time reversal symmetry (basic illustration). 

 “Phenomenological” description of phase transitions: a brief introduction to Landau theory. 

 Phase transitions by soft modes condensation. 

At the end of this lecture, the students should understand how a phase transition leads to the loss of 

certain symmetry operators, and how this may lead in certain cases to the appearance of 

macroscopic observable such as electrical polarisation and magnetisation.  A few basic concepts 

relating to the Landau theory of phase transitions will also be introduced, enabling the students to 

understand why most phase transitions involve the “activation” of a single mode.  Opportunities 

from exam questions will include:  Determine whether polarisation/magnetisation is allowed in a 

given space group symmetry and analysis of what happens at a phase transition.  Simple forms of the 

Landau free energy and their use to determine the behaviour of the order parameters. 

 


