Lecture 3 — Symmetry in the solid state -

Part I1I: The reciprocal lattice and its symmetry.

1 Symmetry and reflection conditions in reciprocal space

1.1 Recap of the key properties of real and reciprocal space and their rela-
tions.

The following important concepts have been illustrated in the previous lectures, but are sum-

marised again here!.

Real space and real lattice

Real-space points are described by means of an origin and real-space position vectors, as
p = o+ v. The choice of the origin is arbitrary, and gives rise to sets of related position
vectors.

Real-space position vectors are generally described as linear combinations of the real or
direct basis vectors (covariant, dimensions: length) with dimensionless coefficients
(contravariant coordinates).

Real lattice vectors are linear combinations of the primitive basis vectors with integral
components. For certain lattices, they can also be expressed as linear combinations of
the conventional basis vectors with integral or simple fractional components. Real
lattice vectors with fractional components are known as centering vectors.

Reciprocal space and reciprocal lattice (RL)

Reciprocal-space position vectors are described as linear combinations of the reciprocal
or dual basis vectors (contravariant, dimensions: length~!) with dimensionless coeffi-

cients (covariant components).

Reciprocal-space points are obtained by adding the reciprocal-space position vectors to
an origin, which, unlike the real-space origin, is not arbitrary (see below).

Reciprocal lattice vectors are linear combinations of the dual basis vectors with integral
components.

'In the remainder we will use the abbreviation RL to mean “reciprocal lattice”, and RLV to mean “reciprocal
lattice vector”.



Dot products

e The dot product of real and reciprocal space vectors expressed in the usual coordinates is

q-v=2mg’ ey
e The dot product of real and reciprocal lattice vectors is:

- If a primitive basis is used to construct the dual basis, 27 times an integer for all q
and v in the real and reciprocal lattice, respectively. In fact, as we just said, all the
components are integral in this case.

- If a conventional basis is used to construct the dual basis, 27 times an integer or
a simple fraction of 27. In fact, as we just said, the components of the centering
vectors are fractional.

e Therefore, if a conventional real-space basis is used to construct the dual basis, only certain
reciprocal-lattice vectors will yield a 27n dot product with all real-lattice vectors. It
is quite easy to show (left as an exercise) that those reciprocal-lattice vectors are exactly
those generated by the corresponding primitive basis.

A conventional basis generates more RL vectors that a corresponding primitive basis. As
we shall see, the “extra’ points are not associated with any scattering intensity — we will
say that they are extinct by centering.

1.2 Centering extinctions

As anticipated in the previous section, reciprocal space vectors generated by a conventional basis
are said to be extinct by centering if their dot product with real-lattice vectors having fractional
coordinates (known as “centering” vectors) is not an integral multiple of 27. These vectors are
therefore not part of the reciprocal lattice generated by a primitive basis. Based of the known
form of the centering vectors for the various lattices, we can easily find the form of these vectors.
Because the conditions are expressed in fractional coordinates, the extinction conditions are the
same for the same type of centering, regardless of the symmetry. These conditions are described
in some detail in Appendix I and summarised in tab. 1 for all the lattice types admitting a

conventional unit cell (conventional basis vectors).



Table 1: Centering extinction and scattering conditions for the centered lattices. The “Extinction”
columns lists the Miller indices of reflections that are extinct by centering, i.e., are “extra” RLV
generated as a result of using a conventional basis instead of a primitive one. The complementary
“Scattering” column corresponds to the listing in the International Tables vol. A [1], and lists the

6,9

Miller indices of “allowed” reflections. “n” is any integer (positive or negative).

Lattice type | Extinction Scattering

P none all

A k+l=2n+1 k+1=2n

B h+1l=2n+1 h-+1=2n

C h+k=2n-+1 h+k=2n

F k+l=2n+1or k+1=2nand
h+l=2n+1or h+1=2nand
h+k=2n+1 h+k=2n

I h+k+l=2n+1 h+k+1=2n

R —h+k+1l=3n+1lor| —h+k+1=3n
—h+k+1=3n+2

2 Fourier transform of lattice functions

In this section, we will consider a generic real or complex function f(r) defined over the real
space, r being a position vector from an appropriately defined origin). We assume that f(r) has
the symmetry properties defined by one of the 230 space groups. We will calculate the Fourier
transform of this function, F'(q), over the whole space. As we shall see in the next lectures, F'(q)

corresponds to the diffraction structure factor. We have:
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where the integral extends to the whole space. We now exploit the lattice periodicity of the

function f(r), which we can express by writing r = ry + x and

f(ro +x) = f(x) (3)

The ry are the symmetry translation vectors, and x is a position vector within the first unit cell,

ie., r,y, 2 < 1. We can also decompose the integral in Eq. 2 in integrals over the unit cells:
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where the integral is now over a single unit cell. We now introduce a set of coordinates that
are appropriate for the symmetry? and recall that in these coordinates the symmetry translation

vectors are expressed as [n’], i.e., a set of three integers. Eq. 4 becomes:

F(q) _ _ Z e—?wzqm / dl'zf(llfl)e_QWqux (5)
(27’(’)5 n; u.c.

The sum is now over all the symmetry translations, i.e., over all the positive and negative val-

ues of the [n']. We will perform the infinite summation by summing over a finite number N

real-lattice vectors first , and then letting N — oo. The following statements is now clear by

inspecting Eq. 5:

F(q) is non-zero only for q belonging to the primitive RL.

In fact, if q belongs to the primitive reciprocal lattice, then by definition its dot product to the
symmetry lattice translation is a multiple of 27, the exponential factor is 1 and the finite summa-
tion yields N (i.e., the number of unit cells). Conversely, if q does not belong to the primitive
reciprocal lattice, the exponential factor will vary over the unit circle in complex number space
and will always average to zero. In particular, F'(q) is zero for the conventional RLV that are
extinct by centering (as we anticipated — this explains the terminology “extinction” we just
introduced). For non-extinct R L vectors, the infinite summation yields co. In lecture 5, we shall
see that that F'(q) is actually a series of § functions, centered at the RL nodes.

2.0.1 Supplementary extinction conditions due to roto-translations

When the symmetry of the crystal contains roto-translation operators, supplementary ex-
tinction conditions are present. Unlike centering extinctions, roto-translation extinctions
only apply to certain /1 k[’s within planes (glides) or lines (screws) in reciprocal space.

Roto-translation extinctions are listed in the International Tavles vol A [1] for each space group,

and are discussed in [2].

?In this section, it should become absolutely clear why we do not use Cartesian coordinates.



2.1 The ”weighed” reciprocal lattice and its symmetry

The previous results have been deduced in a completely general way, regardless of the specific
form of the function f(x). In fact:

It is the periodic nature of f(x) that is responsible for the discrete nature of F'(q).

In this section, we are interested in determining the symmetry of the RL and of the functions
obtained, given a certain lattice function f(x), by “weighing”or “dressing” each point of the
RL with |F(q)|?, calculated at that particular RL point. As we shall see shortly, in diffraction
2

experiments, |F'(q)|* is proportional to the observed scattering intensity. We will simply

state the results, without any derivations. For more details, see [2].

2.1.1 The symmetry of the reciprocal lattice

The “bare” reciprocal lattice has translational invariance, although this property is not retained
by any of the “dressed” lattices. By exploiting the rotational invariance of the dot product [2],
it is straightforward to prove that the RL has the same point-group symmetry (holohedry) of
the real lattice. However, this is not to say that the RL is the same Bravais lattice as the real
lattice. The relation between real-space and reciprocal-space Bravais lattices is sumarised in tab.

2 (more details in [2].

2.1.2 The symmetry of | F(q)|* and the Laue classes

Let g be a symmetry operator in normal form with rotational part R and translational part t. One

can show in a completely general way that

F<q> = / d(X)f(x)e_i(R71Q)'Xe—iq't — F(R—lq)e_iq.t (6)

Eq. 6 shows that:

The reciprocal lattice weighed with | F(q)|* has the full point-group symmetry of the crystal
class.

This is because the phase factor e~ clearly disappears when taking the modulus squared. In

fact, there is more to this symmetry when f(x) is real, i.e., f(x) = f*(x): in this case



Table 2: Reciprocal-lattice Bravais lattice for any given real-space Bravais lattice (BL).

Crystal system

Real-space BL

Triclinic
Monoclinic

Orthorhombic

Tetragonal

Trigonal

Hexagonal

Cubic

Consequently, |F(q)

P
C
P

AorBor(C
I

F
P
1

=vilae

™~ "0

Reciprocal-space BL
P
C
P
AorBorC
F
1
P
I
P
R
P
P
F
1
N / -
dx f*(x)e'dX (7)
27)2 Jue )
N / .
dxf(x)e" "™ = F(—

> = F(q) F(—q) = |F(-q)|* is centrosymmetric. As we shall shortly

see, the lattice function used to calculate non-resonant scattering cross-sections is real. Conse-

quently, the |F'(q)

’ 2

-weighed RL (proportional to the Bragg peak intensity) has the symmetry

of the crystal class augumented by the center of symmetry. This is necessarily one of the 11

centrosymmetryc point groups, and is known as the Laue class of the crystal.



Fridel’s law

For normal (non-anomalous) scattering, the reciprocal lattice weighed with | F'(q)|? has the full
point-group symmetry of the crystal class supplemented by the inversion. This symmetry is
known as the Laue class of the space group.

In particular, for normal (non-anomalous) scattering, Fridel’s law holds:

|[F(hkD)]* = | F(hkD)|* (®)

Fridel’s law is violated for non-centrosymmetric crystals in anomalous conditions. Anoma-
lous scattering enables one, for example, to determine the orientation of a polar crystal or the
chirality of a chiral crystal in an absolute way.

3 Symmetry in Reciprocal Space — the Wigner-Seitz construc-
tion and the Brillouin zones

Up to this point, we have only considered the symmetry of the L nodes, showing that this is
in fact completely adequate when dealing with the Fourier transform of periodic functions. In
essence, crystallography is only interested in the very sharp “spikes” of scattering at the RL
nodes, ignoring completely the vast regions of reciprocal space outside these nodes. For a well-
ordered crystal, scattering outside the RL is weak by comparison but by no means zero, and
contains a wealth of information about intrinsic static disorder (elastic scattering) and dynamics
(inelastic scattering from phonons, spin waves etc.) General (non- R L) reciprocal-space vectors

are also essential in describing phenomena such as lattice electrons, phonons, etc. In short,

Non-periodic phenomena in the crystal (elastic or inelastic) are described in terms of
generic (non-? L) reciprocal-space vectors and give rise to scattering outside the R L nodes.

Although the individual excitations may break every crystal symmetry, the crystal maintains
its symmetry on average (either temporal average or average over different regions of a large
crystal). One therefore usually deals with a reciprocal space that retains the full crystal class
symmetry at the very least or sometimes the Laue symmetry. In describing these phenomena,
however, one encounters a problem: as one moves away from the RL origin, symmetry-related
“portions” of reciprocal space will become very distant from each other. In order to take full
advantage of the reciprocal-space symmetry, it is therefore advantageous to bring symmetry-
related parts of the reciprocal space together in a compact form. This is exactly what the
Wigner-Seitz construction and the Brillouin zone scheme accomplish very cleverly. A very good

description of the Wigner-Seitz and Brillouin constructions can be found in [3].



3.1 The Wigner-Seitz construction

The Wigner-Seitz construction is essentially a method to construct, for every Bravais lattice, a
fully-symmetric unit cell that has the same volume of a primitive cell. As such, it can be applied

to both real and reciprocal spaces, but it is essentially employed only for the latter.

For a given lattice node 7, the Wigner-Seitz unit cell containing 7 is the set of points that
are closer to T than to any other lattice node.

It is quite apparent that:

e Each Wigner-Seitz unit cell contains one and only one lattice node.

e Every point in space belongs to at least one Wigner-Seitz unit cell. Points belonging to more

than one cell are boundary points between cells.

e From the previous two points, it is clear that the Wigner-Seitz unit cell has the same volume
of a primitive unit cell. In fact, it “tiles” the whole space completely with identical cells,

each containing only one lattice node.

e The Wigner-Seitz unit cell containing the origin has the full point-group symmetry of the
lattice (holohedry). In real space, the origin is arbitrary, and all the Wigner-Seitz unit
cells are the same. In the “weighed” reciprocal space the Wigner-Seitz at ¢ = 0 is
unique in having the full point-group symmetry. As we shall see shortly, the Brillouin
zone scheme is used to project fully-symmetric portions of reciprocal space away from the

origin into the first Wigner-Seitz unit cell.

A dummies’ guide to the Wigner-Seitz construction (fig. 1)

Draw segments connecting the origin with the neighbouring points. The first “ring” of points
(marked with “1” in fig. 1 A) should be sufficient, although these points may not all be
symmetry-equivalent.

Draw orthogonal lines bisecting the segments you just drew. These lines define a polygon
containing the origin (fig. 1 B)— this is the Wigner-Seitz unit cell. In 3D, one would
need to draw orthogonal bisecting planes, yielding Wigner-Seitz polyhedra.

Fig. 1 C shows an extended construction (to be used later) including lines bisecting the
segments to the second and third “rings”. As you can see, the new lines do not intersect
the original Wigner-Seitz unit cell.

The whole space can be “tiled” with Wigner-Seitz cells (fig. 2).
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Figure 1: Construction of the Wigner-Seitz unit cell for the case of a C-centered rectangular
lattice in 2D. A: bisecting lines are drawn to the segments connecting the origin with the neigh-
bouring points (marked “1”. B: these lines define a polygon — the Wigner-Seitz unit cell. C:
the Wigner-Seitz unit cell is shown together with lines bisecting segments to more distant lattice
points.

3.1.1 ‘“‘Reduction” to the first Wigner-Seitz unit cell (first Brillouin zone).

As anticipated, the main use of the Wigner-Seitz unit cell is in reciprocal space:
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Figure 2: Extended Wigner-Seitz cell scheme, showing how the entire space can be tiled with
these cells. Each cell can be “reduced” to the first Wigner-Seitz cell with a single RL vector.

Every vector q in reciprocal space can be written as

q=k+ 1 C))

where T is a RL vector and k is within the first Wigner-Seitz unit cell. (i.e., the one contain-
ing the origin). We more often say that k is the “equivalent” of q reduced to the first Brillouin
zone (see here below).

The extended Wigner-Seitz scheme shown in fig. 2 is used to determine which 7 should be
used for a given q — clearly, the one corresponding to the lattice node closer to it.

3.2 The Brillouin zones construction

We have just learned how to “reduce” every reciprocal-space point to the first Wigner-Seitz unit
cell (or first Brillouin zone). But the question is: which “bits” of reciprocal space should be
“reduced” together? One may be tempted to think that an entire Wigner-Seitz unit cell should be
“reduced” together — after all, one would only need a single RL vector to accomplish this. It is
readily seen, however, that this is not a good idea. As we mentioned before, higher Wigner-Seitz
unit cells (i.e., other than the first) do not possess any symmetry, and we are specifically inter-
ested in “reducing” together symmetry-related parts of reciprocal space. Therefore, a different
construction, known as the Brillouin-zone construction-is required to reduce symmetry-

10



Figure 3: Procedure to construct Brillouin zones. The starting point is fig. 1 C. A A number is
given to each polygon, according to how many lines are crossed to reach the origin. Polygons
with the same number belong to the same Brillouin zone. The figure shows the scheme for
the first three Brillouin zones. B Portions of a higher Brillouin zone can be reduced to the first
Brillouin zone in the normal way, i.e., by using the extended Wigner-Seitz construction (here, the
reduction procedure is shown for the third zone). C When reduced, higher zones “tile” perfectly
within the first Brillouin zone.

11



related portions of reciprocal space simultaneously.

The first Brillouin zone coincides with the first Wigner-Seitz unit cell. Higher
Wigner-Seitz unit cells are emphatically not Brilloun zones.

A dummies’ guide to the Brillouin-zones construction (fig. 3)

Start off in the same way as for the Wigner-Seitz construction, but with lines bisecting the
segments to higher-order “rings” of points, as per fig. 1 C.

Many polygons of different shapes (polyhedra in 3D) will be obtained. Each of these will be
given a number according to how many lines (planes in 3D) are crossed to reach the
origin with a straight path. If m lines (planes) are crossed, the order of the Brillouin
zone will be m + 1.

A Brillouin zone is formed by polygons (polyhedra) having the same number (fig. 3 A).

As anticipated, the first Brillouin zone is also the first Wigner-Seitz cell (no line is crossed).

The different portions of a Brillouin zone are “reduced” to the first Brillouin zone in the
normal way, i.e., using the extended Wigner-Seitz construction (fig. 3 B).

All the portions of a higher Brillouin zone will tile perfectly within the first Brillouin zone
(fig. 3 C).

4 ‘‘Real” crystal structures

Having discussed at length the symmetries of periodic “patterns” in 2 and 3 dimensions, we will
devote the last part of this lecture to looking at “real” crystal structures. This is in itself a vast
subject that cannot be exhausted in such a short space. An interesting set of lectures devoted to
the subject can be found in [5]. It is also worth pointing out to the interested student the existence
of several very useful Crystal Structure Databases. The Inorganic Crystal Structures Database
(ICSD), freely accessible on-line from the UK [4], can be searched for names, chemical formulas,
crystallographic data and more, to display the resulting crystal structures in 3D and even to
plot their powder diffraction patterns. The Cambridge Structural Database is the corresponding
source for small-molecule structures. Here, we will outline a few basic principles that should

provide a starting point to understand “real” crystal structures.

4.1 Cohesive forces in crystals — atomic radii

A number of different forces contribute to the cohesion of crystals, including:
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The Coulomb interaction between charged ions.

Chemical bonding and metallic bonding.

The Van der Waals (dipole-dipole) interaction.

Hydrogen bonding.

These forces, which often coexist within the same crystal structure, are of very different strength.
Another crucial difference is the directionality of these forces. Chemical bonding (both ionic
and covalent) is usually strongly directional, and leads to the formation of specific coordina-
tion polyhedra (e.g., octahedra, tetrahedra) within the crystals. Conversely, most other interac-

tions are poorly directional.

One useful way to understand many crystal structures, particularly those of inorganic compounds
of greater interest for physicists, is that of considering them as packings of spheres of different
sizes. Within this very simplistic picture, each ion is characterised by a radius. Atomic radii are

not completely unique to each species, but vary depending on several factors:

The valence state of the ion.

The spin state of the ion.

The number of neighbours (coordination number).

Whether the bonding is ionic or covalent.

The standard reference for covalent and ionic radii was compiled by R.D. Shannon and can be

found in [6]. Several versions of this table can be found on line.

Over most of the periodic tables, ionic and covalent radii vary between 0.5 Aand 2 A. Typ-
ical interatomic distances are therefore of the order of 1.5-2.5 A. This sets the lengthscale
of the probes (X-rays, neutrons, electrons) that can be most profitably used to study these
structures.

4.2 Close-packed structures

When all the “spheres” are of equal size and the interactions between them are not strongly

directional, the most common arrangement is one of the close packed structures (fig. 4):

CCP i.e., Cubic Close-Packed, which has a face-centered cubic (FCC) lattice (space group
Fm3m). Many metals, including all those of the Cu and Ni groups, adopt this structure.

13



Figure 4: The close-packed structures of rigid spheres: HCP (left) and CCP (right).

HCP Hexagonal Close-Packed, which has a hexagonal lattice with two atoms per unit cell
(space group P63/mmc). Metals such as Co, Zn, Cd, Hg, Mg and others adopt this struc-

ture.

Several metals, including Fe, Cr and its group, V and its group and all the alkaline metals adopt
the BCC (Body Centered Cubic) structure — space group Im3m, which is not close-packed.

Close-packed and BCC structures are also adopted by much more complex systems — for in-
stance Cgp (“Buckyballs”) and even viruses (fig. 5) — clearly with much larger inter-sphere dis-
tances. Here we have roughly spherical objects with strong internal bonding, which are weakly
bonded among themselves.

FCC Bee

Figure 5: Simple arrangements of complex objects: (left) the CCP structure of Cgy (“Bucky-
balls”) and (right) the BCC structure of the foot-and-mouth virus.

4.3 Packing spheres of different radii

Many simple binary or ternary compounds are made of ionic species with different radii. In these
cases, their crystal structures can often be thought of as being close-packed arrangements of the
larger spheres, with the smaller spheres located in the “interstices” or “vacancies” between the
larger spheres. Both CCP and HCP structures have vacancies of this type, surrounded by four
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spheres (tetrahedral vacancies) or six spheres (octahedral vacancies). Because of the geom-
etry of the vacancies, this structural arrangement is suitable for ions with strongly directional
bonding. When strong directional bonding is present, compounds with ions with similar radii
and even mono-atomic compounds can adopt these structure. Among the structures that can be
described in this way are:

The NaCl structure (space group F'm3m) where Na fills all the octahedral holes of the CCP

structure.

The fluorite structure (prototype compound CaF,, space group F'm3m), where the F atoms fill
all the tetrahedral holes of the CCP structure (fig. 6).

The zinc blende structure (prototype compound ZnS, space group F'43m), where the Zn ions
fill half of the tetrahedral holes of the CCP structure.

The perovskite structure (prototype compound CaTiOs, space group Pm3m). In this interest-
ing ternary example, the CCP array is formed by both Ca* (positively charged) and O*~
(negatively charged). The smaller Ti ion fills a quarter of the octahedral vacancies.

The corundum structure (Al,Os, space group R3c). Here, the oxygen ions form a HCP struc-
ture, and the much smaller Al ions fit into 2/3 of the the octahedral vacancies (1/3 of the
vacancies are empty). The ilmenite (FeTiOs, space group R3) is a variant with two metal
ions instead of one.

The diamond structure is adopted, among others, by C and Si. It is identical to the zinc blende

structure but with two identical, strongly-bonded atoms.

CaF, ZnS CaTiO,

Figure 6: Three cubic structures obtaining by inserting ions in the “interstices” of the CCP
structure. Left the fluorite structure ; center the zinc blende structure; right the perovskite
structure.
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4.4 Framework structures

Many crystal structures cannot be simply thought of in terms of close packing. One notable
example is given by framework structures — structures built out of very rigid polyhedra (most
often tetrahedra) with rather “flexible”” connections to each other. Framework structures are low-
density structures, and can often collapse rather easily to higher-density forms upon application
of pressure.

The structure of quartz (SiO;) consists of corner-sharing SiO, tetrahedra so that each Si is
bonded to four oxygens, and each oxygen is bonded to two silicon atoms. The resulting struc-
ture forms an open three-dimensional framework, and it is quite flexible, so that different crystal
variants exist (a- and [3-quartz, crystobalite, trydimite etc.) When cooled rapidly, the quartz
structure is unable to “choose” between these variants and forms a glass. An even more extreme
example of silicate framework structure is provided by zeolite (SiO-, fig. 7), where the tetrahe-
dral framework encompasses large cavities. Zeolite is the prototype of a large family of silicates
and alumino-silicates, collectively known as “zeolites”, which have wide-ranging applications in
catalysis.

Figure 7: The structure of zeolite 5 (space group P45/mmc). Note the complex framework of
Si0, tetrahedra, defining a large cavity in the middle of the unit cell. Many silicate and alumino-
silicate zeolites exist, both natural and synthetic.
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4.5 Layered structures

Many crystal structures have a pronounced 2-dimensional character, with strong covalent or ionic
bonding in 2 dimensions and weaker (typically Van der Waals) bonding in the third. A well
known example of this is graphite (space group P63 /mmc with two atoms per unit cell). Due to
the weak inter-layer forces, the layers can “slip” onto each other, so that structures of this types
are often employed as lubricants. Other examples of this kind are provided by the clays, such
as vermiculite (fig. 8), and by the delafossite family (prototype CuFeOs, space group R3m or
P63/mmc). Less extreme examples of 2D structures are provided by the high- T, supercon-
ducting cuprates (fig 9).

Figure 8: The structure of the vermiculite clay (chemical formula A3B4Oyq - (H20),, with
A=Mg, Fe, Al, B=Al, Si; space group C2/m) is highly 2-dimensional. The A site forms trian-
gular layers with formula AO,, connected to “rings” of BO, tetrahedra. These layers are widely
separated and weakly interacting, and, as typical of clays, can accommodate large amounts of
rather disordered water molecules.

4.6 Molecular structures

All the structures we have defined up to this point are built of infinite “networks” of atoms, either
in 3D or in 2D. By contrast, molecular structures are built out of well defined “molecules”, with
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Figure 9: The structure of the 90 K-high-T. superconductor YBa;Cu3zO; or YBCO is also 2-
dimensional, but with a less pronounced 2D structural character compared to clays. The central
ion, Y, is ionically bonded to oxygen, so the structure does not exfoliate like that of graphite.
Nevertheless, the electronic structure is highly 2D. Note that Cu exists both in square-pyramidal
(“planes”) and in square-planar (“‘chains”) coordinations.

strong internal covalent bonding but weakly interacting with each other. A simple example is
the structure of ice, with covalent bonding within the H,O molecule and weak hydrogen bonding
between molecules. Orinary ice is known as “ice 1h”, and has space group P63 /mmc. However,
due to the particular geometry of the molecules, ice is highly polymorphic as a function of tem-
perature and pressure, with 15 known different crystallographic structures being known to date.
Molecular structures are adopted by most small molecules (such as drugs) and macromolecules
(such as proteins). The molecule itself has rigid components (such as benzene rings) connected
to each other by “joints” having some degree of flexibility. Therefore, the same molecule can of-
ten adopt different crystal structures (polymorphism), having different molecular configurations
and packing of different molecules within the unit cell.
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Figure 10: The molecular crystal structure of aspirin. The individual molecules are easily iden-
tifiable, and are linked to each other by hydrogen bonds (dotted lines).

5 Appendix I: centering extinction conditions

A, B or C-centered lattices The centering vectors in conventional coordinates are 0 % %, % O%
and % %O, respectively for the three types of lattice, modulo integral numbers. The dot
product of a conventional RLV q with covariant coordinated %, k£ and [ with these centering
vectors is therefore 273 (k+1), 23 (h+1) and 273 (h + k). We conclude that conventional
RLV with k + | # 2n etc., where n is any positive or negative integer, are extinct by

centering.

F-centered lattices Here, all the faces are centered, so any condition k + [ # 2n, h + 1 # 2n
and h+ k # 2n will lead to extinction. Conversely, k+1 = 2n, h+[ =2nand h+k = 2n
must be simultaneously true for a conventional RLV to be part of the primitive reciprocal
lattice.

I-centered lattices Here, the centering translations are of the type 1 1 1, and their dot product
with a conventional RLV q is 275 (h + k + [). Conventional RLV with h + k + | # 2n are

therefore extinct by centering.

R-centered lattice in hexagonal coordinates We recall that the rhombohedral cell is primitive,
so it does not give rise to extinctions by centering. In the hexagonal setting, there are two
centering translations - % 3 3 and 3 2 2. The dot products q - v are 273(2h + k + 1) and
2#% (h+ 2k +2l), and both must be integral multiples of 27 for q to belong to the primitive
RL. This is equivalent to 2h + k + 1 = 3n, h+ 2k + 2] = 3n. We now note that if the first
condition is satisfied, so is the second. In fact, h + 2k + 2l = 3h + 3k + 31l — (2h + k + 1),
and both terms on the right side are three times an integer if 2h + k£ + [ = 3n. The only
condition for belonging to the primitive reciprocal lattice is therefore 2h + k 4 [ = 3n, or

also —h + k + | = 3n, since 3h is three times an integer.
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6 Bibliography

Ashcroft & Mermin [3] is now a rather old book, but, sadly, it is probably still the best solid-
state physics book around. It is a graduate-level book, but it is accessible to the interested
undergraduate.
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