
Lecture 4 — Wave and particle beams.

1 Introduction

In the previous lectures, we have learned about the classification of periodic structures based on
their symmetry, and we have seen some examples of real crystal structures build out of molecules
or atomic frameworks. In this lecture, we will introduce some elements of the theory of scattering
of electromagnetic radiation (X-rays) and of particle beams (electrons, neutrons), which are all
essential tools to analyse the atomic structure of real crystals. In this course, we will be primarily
concerned with elastic scattering (diffraction), which can determine the following properties of
crystalline matter:

• The crystal structure, i.e., the position of the atoms in the crystal averaged over a large num-
ber of unit cells and over time. This information is extracted from Bragg diffraction, i.e.,
from the sharp diffraction spots that are the characteristic feature of crystal diffraction. As
we have seen, sharp spots centred at the reciprocal lattice points arise as a consequence
of real-space periodicity (i.e., regardless of the detailed structure or even of the atomic-
ity of the crystal) in the process of calculating a 3-dimensional Fourier transform of a
lattice function. Bragg diffraction is observed for X-ray, neutron and electron scattering,
although, for the latter technique, it is less straightforward to obtain quantive crystal struc-
ture information.

• The deviation from perfect periodicity. No real crystal structure has perfect, infinite trans-
lational order, if nothing else, because all real crystals have a finite size and all atoms are
subject to thermal motion (at zero temperature, to zero-point motion). The general con-
sequence of these deviations from perfect periodicity is that the scattering will no longer
occur exactly at the RL points (δ functions), but will be “spread out”. Finite-size effects
and metric fluctuation of the size of the unit cell (known as strain — often due to the pres-
ence of stresses in the crystal), produce peak broadening without altering the integrated
cross section (amount of “scattering power”) of the Bragg peaks. These “peak broaden-
ing” effects are of course convoluted with the instrumental resolution of the probe being
employed. Fluctuation in the atomic positions (e.g., due to thermal motion) or in the scat-
tering amplitude of the individual atomic sites (e.g., due to substitutions of one atomic
species with another), give rise to a selective reduction of the intensity of certain Bragg
peaks by the so-called Debye-Waller factor, and to the appearance of intensity elsewhere
in reciprocal space (diffuse scattering). Analysis of peak widths, Debye-Waller factors and
of diffuse scattering can be employed to extract information about crystal defects, particle
sizes, internal stresses and thermal motion.
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• The case of liquids and glasses. Here, crystalline order is absent, and so are Bragg diffraction
peaks, so that all the scattering is “diffuse”. Nonetheless, scattering of X-rays and neutrons
from liquids and glasses is exploited to extract radial distribution functions — in essence,
the probability of finding a certain atomic species at a given distance from another species.
This information, together with previous knowledge of the molecular structure of the liquid
or of the stable atomic clusters in a complex glass, often enables one to paint very detailed
pictures of the structure of disordered materials.

• The magnetic structure. Neutron possess a dipole moment and are strongly affected by the
presence of internal magnetic fields in the crystals, generated by the magnetic moments
of unpaired electrons. Magnetic scattering of X-rays is much weaker, but modern syn-
nchrotron techniques have turned it into a very powerful tool, highly complementary to
neutron scattering. As in the case of atomic structures, ordered magnetic structures of fer-
romagnets or antiferromagnets give rise to Bragg scattering, whereas disordered magnetic
structures (as for paramagnets or “spin glasses” produce magnetic diffuse scattering.

It is important to stress that, in order to extract information about the atomic structure of a crystal,
liquid or glass by diffraction, the wavelength of the probe must be comparable or smaller
than the interatomic distances, which are typically a few Ångstroms (10−10 m, or 10−1 nm).
Tab. 1 illustrates the typical wavelengths and energies employed for X-ray, neutron and electron
diffraction.

Table 1: Typical wavelenghts and energies employed for X-ray, neutron and electron diffraction.
For electromagnetic radiation, E = hc/λ, with hc = 12.4 KeV · Å; for a non-relativistic particle
beam, E = 2π2~2

mλ2 =, where 2π2~2
m

= 82 meV · Å2 for neutrons and 150 eV · Å2 for electrons.
A typical Transmission Electron Microscope (TEM) can operate at 200 KV raising the electron
velocity to 70 % of the speed of light, and some state-of-the-art microscopes can reach the MV
range; therefore, relativistic effects need to be taken into account in converting between energy
and wavelength.

λ E

X-rays 0.1–6 Å 2–150 KeV
neutrons 0.3–10 Å 1–1000 meV
electrons 0.02–3 Å 20 eV–200 KeV

Note here that, whereas the wavelength ranges of the different probes are overlapping, the energy
ranges are very different — namely are much lower for neutrons than for the other probes. We
will return on the subject later on.
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In this lecture, we will introduce the interaction of radiation and particle beams with
matter, with the goal of understanding how this can be exploited to study the solid state.
We will examine in some detail the interaction between X-rays and matter, whilst providing
only a qualitative description of the of electron- and neutron-matter interaction. We will
also learn about the main method of production of these types of radiation.

2 Thomson scattering of X-rays

Bragg diffraction of X-rays is primarily due to the scattering of X-ray from electrons bound to the
atoms of the crystal structure. It is generally a very good approximation (we will look at caveats
and exception later on) to employ the so-called Thomson formula (from J.J. Thomson, Nobel
Prize 1906) to calculate the relevant scattering amplitudes and cross sections. This is a bit of a
paradox, since the Thomson formula assumes free electrons, but the agreement with experiments
in nonetheless very good.

2.1 Scattering from a free electron

Thomson scattering is a classical phenomenon, and can be explained as follows: as electromag-
netic radiation impinges on a free electron, the oscillating electric field subjects it to an acceler-
ation. The scattered radiation is the radiation emitted by the accelerated charge. If a charge is
accelerated and is observed in a reference frame where its velocity is small compared to that of
light, the electric field can be written as

E(R, t) =
(−e)

4πε0c2

[
n× (n× a)

R

]

ret

(1)

where a is the acceleration and n is a unit vector along the segment connecting the particle to
the observer and pointing towards the latter (fig. 1). The subscript “ret” means “retarded” (see
below).

Note that if we keep rotating the scattered beam in the direction shown in fig. 1, i.e., in
the plane containing the incident polarisation, the projection a⊥ will eventually become
zero at 90◦. On the other hand, if we rotated perpendicular to the incident polarisation,
the projection would obviously stay the same. In a nutshell, this is the essence of the
polarisation factor.

Before we discuss eq. 1, it is worth reminding the important vector relation (used also later on in
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Figure 1: Diagram illustrating the Thomson scattering of X-rays from a free electron. The accel-
eration due to the incoming wave is a, whereas its projection perpendicular to the line of sight
is a⊥.

the course). For any three vectors:

a× (b× c) = (a · c)b− (a · b)c (2)

n× (n× a) = − [a− (a · n) n] (3)

The expression in square brackets on the right side of eq. 3 is the projection of a on the
plane perpendicular to n

In eq. 1, the square bracket with subscript “ret” means that the quantity in the bracket is to be
evaluated at the “retarded” (i.e., earlier) time t− R/c. R is the distance between the “retarded”
position and the observer (fig. 1). Since we are interested in the radiation at a great distance from

4



the particle and at oscillatory, small-amplitude motions of the latter, we can replace R and n with
constant quantities referring to the average position of the particle.

The electric field due to an accelerated particle is proportional to the projection of the
acceleration perpendicular to the line of sight.

Let us consider a beam of polarised X-rays (i.e., with a well-defined direction of E, identified by
the unit vector ε) impinging on a free electron (again, refer to the scheme in fig. 1). The particle
with be accelerated by the electric field εE0e

−iωt of the incoming wave so that

a(t) =
(−e)

m
εE0e

−iωt (4)

Substituting eq. 4 into eq. 1 we obtain:

E(R, t) =
e2

4πε0mc2
E0

e−iω(t−R/c)

R
[n× (n× ε)] =

e2

4πε0mc2
E0

ei(kR−ωt)

R
[n× (n× ε)] (5)

where k =
ω

c
is the wavenumber. The quantity r0 =

e2

4πε0mc2
= 2.82 × 10−15 m is known as

the classical electron radius. By applying eq. 2 once again we find that the expression in square
bracket on the right side of eq. refeq: induced acceleration is

[n× (n× ε)] = − [ε− (ε · n) n] (6)

i.e., it is minus the component of ε perpendicular to n.

The scattered polarisation ε′ is the projection of the incident polarisation perpendicular to
the line of sight.

It is useful at this point to introduce two orthogonal reference components of ε and of the scat-
tered polarisation ε′, according to the scheme shown in fig. 2: επ and ε′π are in the “scattering
plane”, defined by the incident and outgoing directions, whereas εσ = ε′σ are perpendicular to
the scattering plane and are equal. We can decompose the incident polarisation as

ε = cos ξ εσ + sin ξ επ (7)
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Figure 2: Diagram illustrating the convenstional σ and π reference directions for the incident and
scattered polarisation. Note that εσ cot ε′σ = 1 always. Conversely, επ cot ε′π < 1 depends on
the scattering angle γ, and vanishes for γ = 0.

so that the incident wave has σ-polarisation for ξ = 0 and π-polarisation for ξ = π
2
. The incident

polarisation makes an angle ξ with the vector εσ. With a little geometry we conclude

E(R, t) = −r0 E0
ei(kR−ωt)

R
[cos ξ ε′σ + sin ξ cos γ ε′π] (8)

where γ is the angle between the incident and scattered wavevector (this angle is also known,
by longstanding diffraction convention, as 2θ). Based on eq. 8, we can make the following
observations:

• A plane wave impinging on a quasi-free charge produces a scattered spherical wave
ei(kR−ωt)

R
, with an amplitude that in general depends on the scattering angle γ.

• If the incident wave is σ-polarised, the scattered wave is σ′-polarised, and has amplitude
r0

R
E0.

• If the incident wave is π-polarised, the scattered wave is π′-polarised, and has amplitude
r0

R
E0 cos γ.

• The intensity of the scattered wave is zero for scattering of π polarisation at 90◦.

• The scattered wave has a phase shift of π upon scattering (minus sign).
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The instantaneous energy flux of the scattered wave is given by the Poynting vector:

S = E×H = ε0c|E|2 n (9)

The average power radiated per unit solid angle in both polarisations is therefore

dP

dΩ
= R2 〈|S|〉 =

ε0c

2
R2 |E|2 =

ε0c r2
0

2
E2

0

[
cos2 ξ + sin2 ξ cos2 γ

]
(10)

It can also be shown that the power radiated for an arbitrary final polarisation ε′ is

(
dP

dΩ

)

ε′
=

ε0c r2
0

2
E0 [ε · ε′]2 (11)

As appropriate for a scattering process, it is convenient at this point to introduce the cross section,
defined as the average power radiated per unit solid angle divided by the average incident power
per unit area (power flux, Φ), which is

Φ =
ε0c

2
E2

0 (12)

The cross section into both final polarisation channels (i.e., if the scattered beam is measured
without an analyser) is therefore

dσ

dΩ
= r2

0

[
cos2 ξ + sin2 ξ cos2 γ

]
(13)

whereas for an arbitrary final polarisation ε′ is

(
dσ

dΩ

)

ε′
= r2

0 [ε · ε′]2 (14)

For an unpolarised X-ray beam, for which all the angles ξ are equally represented, the cross
section becomes

dσ

dΩ
= r2

0

[
1 + cos2 γ

2

]
(15)
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NOTE: our discussion on the incident and final polarisations is relevant because different X-ray
sources have different characteristics. The beam from a typical lab X-ray machine is unpolarised,
and so eq. 15 applies. Synchrotron radiation is naturally polarised in the plane of the electron
orbit,so that ξ = 0 in eq. 13. Unlike the case of lab machines, synchrotron diffractometers have
a vertical scattering plane, so that the 90◦-cross section does not vanish. Synchrotron beamlines
specifically designed for resonant or magnetic scattering often have the ability to change the
incident polarisation to the π channel or even to produce circularly-polarised X-rays. in addition,
it is possible to analyse the scattered polarisation as well.

2.2 Thomson scattering from many quasi-free electrons

The Thomson formula can be easily extended to the case of multiple scattering centres, provided
that the amplitude of the motion of each electron is small with respect to the wavelength. What
we aim to achieve is to find an expression for the X-ray scattering amplitude and cross section of
a multi-electron atom. In this case, the radiation emitted by each electron at position xi will be
characterised by an approximately time-independent phase factor eik·xi , accounting for the fact
that the charge is not at the origin, k being the wavevector of the incident radiation. Also, the
radius R in eq. 8 needs to be replaced with individual radii Ri. Here, we can employ the very
useful trick of approximating

Ri ≈ R− n · xi (16)

This is equivalent to considering diffraction in the “far field” limit (Fraunhofer diffraction). Eq.
16 can be obtained by writing the vector relation;

R = |R| = |Ri − xi| = |Rin− xi| (17)

and expanding it to the quadratic term in xi/R; is certainly valid in the case we are interested
in, where the distances between scattering centres are comparable to atomic sizes whereas R

(the experimental scattering path) is macroscopic. By summing the amplitudes of individual
scattering centres we obtain

E(R, t) = −r0E0
ei(kR−ωt)

R
[ε · ε′] ∑

i e
i(ki−kf )·xi

= −r0E0
ei(kR−ωt)

R
[ε · ε′] ∑

i e
−iq·xi (18)
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where ki and kf are the incident and scattered wavevectors and q = kf −ki.1 Note the important
formula, valid for elastic scattering (we recall that γ = 2θ):

q = |q| = 4π sin θ

λ
(19)

Eq. 19 is illustrated graphically in fig. 3

Figure 3: Scattering triangle for elastic scattering.

We can extend this result to a continuous distribution of charges by replacing the sum over
discrete charges with an integral over the electron density ρ(r)

E(R, t) = −r0E0
ei(kR−ωt)

R
[ε · ε′]

∫
ρ(x)e−iq·xdx (20)

The integral

f(q) =

∫
ρ(x)e−iq·xdx (21)

is known as the atomic scattering factor or form factor.
1Throughout this part of the course, we will employ the convention that q is the change of wavevector of the

particle or photon, so q = kf − ki. the convention q = ki − kf identifies q with the wavevector transferred to the
crystal, and is widely employed particularly in the context of inelastic scattering
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We have arrived here at an important result: the scattering amplitude for many quasi-free
electrons is proportional to the Fourier transform of the charge density. Note that the
integral for q = 0 is the total charge, which for an atom is the atomic number Z (fig. 4).

A key fact to remember: the more spread out the charge is around the atom, the faster
f(q) will decay at high q.

High q ≡ high scattering angles, short wavelengths.

Eq. 20 can be further simplified in the case of a spherically symmetric charge distribution (the
development is straightforward by converting to polar coordinates with the z axis along q):

f(q) = 4π

∫ ∞

0

dr r2 ρ(r)
sin qr

qr
(22)

The cross sections are obtained in the same way as for a single charge — for instance, the
unpolarised cross section for an atom is:

(
dσ

dΩ

)

atom

= r2
0 |f(q)|2

[
1 + cos2 γ

2

]
(23)

which, in forward scattering, becomes:

(
dσ

dΩ

)

atom

= r2
0 Z2

[
1 + cos2 γ

2

]
(24)

One can find tabulated values for neutral and ionised atoms in the International Tables for Crys-
tallography, volume C [1], p 555 and p 566, respectively.

2.3 X-ray absorption: the photo-electric effect and X-ray fluorescence

When the beam of X-rays impinges at normal incidence on a slab of material of thickness L,
it suffers both scattering and absorption, and is therefore attenuated according to the familiar
equation:
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Figure 4: Atomic scattering factors (form factors) for selected neutral atoms and ions. Note that
sin θ/λ = q/4π.

I = I0e
−µL (25)

where µ is the linear attenuation coefficient, which is related to the total cross section σtot

(scattering plus absorption) by the equation:

µ = σtot Na (26)

where Na is the number of scattering/absorption centres (here atoms) per unit volume. Fig. 5
shows a comparison of the cross sections of different processes leading to X-ray attenuation in
materials.

At X-ray energies used in typical experiments (5–50 KeV), the photo-electric absorption
cross section is by far the largest contributor to X-ray attenuation.
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Figure 5: Contributions to the X-ray scattering and absorption cross section for the element
carbon (C), from the International Tables for Crystallography, vol. C [1], p 213. In this figure,
σel is the Thomson cross section, σinel is the Compton inelastic cross section and σpp is the pair-
production cross section, whereby a high-energy photon produces an electron-positron pair. Note
the K absorption edge in the photo-electric cross section at 284.2 eV

Key facts about the photoelectric absorption of X-rays

• In the photo-electric absorption process, a photon is completely absorbed and the energy is
transferred to a core electron (i.e., an electron in the inner atomic shell), which is excited
into unoccupied bound states above the Fermi energy or in the continuum.

• The key parameter controlling this effect is, naturally, the electron binding energy, which is
typical of each shell and atom or ion. No photoelectric absorption can take place if the
photon energy is lower than the binding energy of the electron. This is in complete
analogy with the more familiar photo-electric effect in semiconductors. As the photon
energy is increased through a binding energy “threshold”, additional absorption can
take place, so absorption increases abruptly. This is known as an absorption edge (see
fig. 6).

• Binding energy are classified based on the quantum numbers of the core electron. A letter
indicates the principal quantum number of the core electron, so “K” for n=1, “L”
for n=2, “M” for n=3 “N” for n=4 and so on. This is followed by a roman subscript
indicating energy sub-levels. Therefore, the K edge indicates a transition from the 1s
core state. LI , LII and LIII indicate transitions from the 2s, 2p1/2 and 2p3/2, respectively
(2p1/2 and 2p3/2 having distinct values of the total angular momentum J).
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• An X-ray photo-electric absorption event is followed by a chain of X-ray emission (or flu-
orescence) events whereby the excited atom gradually relaxes to the ground state. The
processes of absorption and subsequent re-emission are shown schematically in fig. 7.
Strong emission lines are those that follow the dipole selection rules, i.e., ∆l = ±1 and
∆j = 0,±1. For example, for transition metals, there are 3 strong emission lines: Kα1

and Kα2 for transitions from 2p1/2 and 2p3/2 to 1s and Kβ for transitions from 3p to 1s.
X-ray emission is extensively employed to produce monochromatic X-ray radiation (see
below).

• Far from absorption edges, photo-electric absorption decreases as a function of photon
energy, following the very approximate law:

σph ∝ Zn

(~ω)3
(27)

where Z is the atomic number and the exponent is a number between 4 and 5.

• A list of characteristic absorption and emission X-ray energies can be found in the Interna-
tional Tables for Crystallography, vol. C [1], starting from p 206.

2.4 X-ray scattering beyond the free-electron approximation

Up to now, we have left the issue of “free” electrons somewhat ambiguous. Truly “free’ electrons
(e.g., conduction electrons in a metal) hardly contribute to the scattering of X-rays, because
their probability distribution extends a long way throughout the crystal, and, from eq. 21, the
form factor decays very rapidly away from forward scattering (fig. 4). Conversely, the largest
contribution to X-ray scattering from atoms is given by “core” electrons, which are close to the
nucleus and have slowly decaying from factors — but these electrons are certainly not free!
Indeed, there are large departures from the Thomson scattering formula near atomic resonances,
where the energy of the photon is just sufficient to eject an electron from a core state into the
continuum. As we shall briefly see later, away from resonances, the Thomson formula can be
corrected to a very good approximation by replacing the form factor by the complex quantity

f(q) = fThom(q) + f ′(~ω) + if ′′(~ω) (28)

where the so-called anomalous terms, f ′ and f ′′, away from atomic resonances do not depend on
q and are weak functions of the photon energy.
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Figure 6: Attenuation length (1/µ) in microns for elemental iron (Fe), in the energy inter-
val between 30 eV and 25 KeV. The figure was generated using the attenuation calculator in
http://henke.lbl.gov/optical constants/atten2.html. Note the three absorption edges: K at 7.112
KeV, L (actually three edges at 845 eV, 720 eV and 707 eV) and M (edges at 90 eV and 50 eV).

A simple justification of eq. 28 is given in Appendix I.

It can be shown, as a consequence of the so-called optical theorem, that the imaginary
part of the scattering factor is proportional to the linear absorption coefficient due to the
photoelectric effect (see below).

f ′′(~ω) =
ω

4πr0cNa

µ (29)

where Na is the number of atoms per unit volume, and the other symbols have the usual
meaning. The quantity µ is the linear absorption coefficient, defined in eq. 25.
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Figure 7: Schematic representation of the absorption and subsequent emission for a K edge
event. Left: a photon with energy above the K edge is absorbed and an 1s electron is ejected
above the Fermi energy or into the continuum. Right: an electron in the 2p1/2 shell makes a
transition to fill the 1s core hole, resulting in the emission of a photon with the characteristic
energy Kα2.

3 Thermal neutron and electron scattering from atoms and
spins

3.1 Introduction

Up to this point, we have carefully examined the case of X-ray scattering from electrons and
atoms. One important result we have obtained (for example, see eq. 8) is that

The scattering process generates a spherical wave, the squared amplitude of which is pro-
portional to the cross section.
This result is completely general, and, within the framework of the approximations we have
used, is valid for electron-electron scattering as well as for thermal neutron scattering from nu-
clei and from magnetic moments. As in the case of photons, we will therefore have to calculate
the scattering amplitudes from individual scatterers.
If multiple scattering centres are present, we will sum up the amplitude from the individual
centres with the appropriate phase.

Naturally, the wave-like nature of particle beams (neutrons and electrons) is essential in deriving
these results, so, unlike the case of photons, we will have to work within the framework of
quantum mechanics.
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A rather extensive derivation of the scattering amplitudes and cross sections for electron and
neutron scattering is contained in Appendix II. In the following paragraphs, we will quote the
most important results and formulas and provide a qualitative description of the relevant physics.

3.2 Elastic scattering of electrons from atomic charges

• Electrons are elastically scattered by the Coulomb potential of the nuclei (attractive) and of
other electrons (repulsive).

• Electron scattering is much stronger than Thomson scattering. Therefore, The single-
event scattering approximation we have employed so far is of limited use, and a full
“dynamical” treatment is essential to obtain quantitative information about charge densi-
ties.

• Within the range of validity of the kinematic approximation (e.g., very thin samples of light
atoms), the electron scattering amplitude fB(q) can be calculated as a function of the
X-ray form factor fX

fB(q) =

(
e2

ε0

m

2πq2~2

)
(Z − fX(q)) (30)

• One can get a good idea of the huge difference between electron and X-ray cross sections by
comparing their scattering amplitude for q = 0 (both are expressed in metres)

r0fX(0) = r0 Z = 2.82× 10−15 Z X− rays

fB(0) =
2

3

(
e2

ε0

m

2π~2

)
Z < r2 >= 2.23× 10−10Z < r2 > electrons (31)

where < r2 > is the mean squared atomic radius expressed in Å, which is typically of
the order of 0.2− 2Å2

the electron elastic scattering amplitude is 4-5 order of magnitudes larger than the
X-ray scattering amplitude

3.3 Properties of thermal neutrons

• Free neutrons are unstable, with half-life τ = 10.6 min. (β-decay)

• Neutrons bound in nuclei are (generally) stable.

• Mass: 1.67492729(28)× 10−27 kg
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• Electric dipole moment D < 10−25 (e cm)

• Spin: s = 1
2

— neutrons are fermions.

• Magnetic dipole moment: µ = −1.9130418 µN , where µN = e~
2mp

= 5.05078324(13)× 10−27

JT−1 is the nuclear magneton.

Table 2: Neutron wavelenghts and kinetic energies in different “slow” ranges. The thermal
energy per particle at room temperature is 25 meV.

λ (Å) E (meV)
Cold 3–30 0.1-10
Thermal 1–3 10–100
Hot 0.4–1 100–500
Epithermal < 0.4 > 500

3.4 Elastic scattering of thermal neutrons

Neutrons are elastically scattered by the condensed matter through two completely different
mechanisms, but, as it turns out, yielding comparable scattering lengths.

1. By nuclear interaction with the atomic nuclei.

2. By dipole interaction with the unpaired spin and orbital magnetic moments of the
atoms. This is only present if the atom or ion has a magnetic moment.

A rather complete description of these interactions is contained in Appendix II. A summary of
the key result is provided here below.
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Neutron-nuclear interaction

• The neutron-nuclear interaction is isotope and elements specific, and depends on the mu-
tual orientation of the neutron and the nuclear spin.

• As far as neutron crystallography is concerned, the key parameter is the scattering ampli-
tude averaged over the nuclear spin states, known as the coherent scattering ampli-
tude.

• The neutron nuclear coherent scattering amplitude is independent on q — it carries no form
factor, and is therefore expressed by a single number, known as the Fermi length.

• Fermi lengths can be positive or negative, depending on whether the neutron-nuclear
interaction is attractive or repulsive. For typical nuclei, they are of the order of a
few fm (10−15 m) (see fig 8), which means that they are comparable to the classical
electron radius. However, atoms have a single nucleus and many electrons, so X-ray
scattering cross sections in the forward direction are typically much larger than neutron
cross sections (X-ray cross sections decay at high q due to the form factor).

• Fermi lengths do not vary in a systematic way across the periodic table (fig 8), which means
that with respect to X-rays, neutrons are uniquely sensitive to some light elements
— notably oxygen. The different scattering lengths of different isotopes is also widely
exploited in the so-called contrast variation techniques.

Figure 8: Variation of the Fermi length as a function of atomic weight.
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Neutron-magnetic interaction

• When the scatterer carries a magnetic moment, in addition to the normal nuclear interaction,
neutron are also scattered by dipole-dipole interaction from the magnetic moment of the
atom.

• Magnetic scattering of neutrons is governed by the following vector scattering amplitude.

An = γNr0fm(q)M⊥ (32)

where γN is the neutron gyromagnetic ratio (−1.9130418), r0 is the familiar classical
electron radius and M⊥ is the projection of the atomic magnetic moment perpendic-
ular to the wavevector transfer q, and is expressed in Bohr magnetons.

• The quantity fm(q) is known as the neutron magnetic form factor, and is normalised so
that fm(0) = 1. It is similar to the X-ray form factor, except for the fact that it only
include the more extended density of unpaired electrons. Therefore magnetic neutron
scattering decays very rapidly at high q.

• From eq. 32 one can obtain a number of cross sections, accounting for the different ori-
entations of the neutron spin with respect to the atomic magnetic moment (neutron po-
larisation). The most important cross section is the unpolarised neutron cross section
(averaged over all the possible neutron polarisations), which, for a single atom, is:

dσ

dΩ
= γ2

Nr2
0f

2
m(q)|M⊥|2 (33)

• Typical magnetic moments for atoms and ions are a few Bohr magnetons. Therefore, from
eq. 33, one finds that neutron nuclear and magnetic scattering cross sections are
typically comparable in magnitude for magnetic atoms.

• Although X-rays are also scattered by magnetic moments, in both resonant and non-resonant
conditions, the magnetic scattering cross section for neutrons is several orders of
magnitude greater than that of X-rays. This makes neutrons the technique of choice
to study magnetic structures. X-ray magnetic scattering has some unique advantages,
and is steadily gaining in popularity thanks to the advent of powerful synchrotron sources.
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3.5 Absorption of thermal neutrons

When a thermal neutron collides with a nucleus, it may be scattered or absorbed. Absorption
process are those in which there is no neutron in the final state; they can be either neutron
capture (known as (n, γ)), in which the mass number of the final nucleus is increased by 1 unit,
or a transfer reactions, in which the mass number of the final nucleus is decreased and an α

particle ((n, α)) or a proton ((n, p)) is emitted. Here are some examples:

(n, γ) 197Au + n → 198Au + γ Neutron captureby gold

(n, p) 3He + n → 3H + p Triton/protonproduction

(n, α) 10B + n → 7Li + α Alphaproduction

(n, α) 6Li + n → 3H + α Triton/alphaproduction (34)

Reactions such as those in eq. 34 are extensively used in the process of neutron detection and to
fabricate neutron shields. In general, we can say that

Neutron absorption

• Thermal neutrons are weakly absorbed by most materials, with typical absorption lengths
of the order of a cm.

• Neutrons with longer wavelengths are more strongly absorbed. For most materials, ab-
sorption cross sections are proportional to the neutron wavelength, so the absorption
lengths are inversely proportional to the wavelength.

4 X-ray production and detection

4.1 Introduction

In this section, we will briefly describe the most important methods of X-ray production, both in
the laboratory and at large-scale facilities. We will also spend a few words on X-ray detectors,
although this description will be necessarily incomplete given the time restrictions in this course
and the magnitude of the subject.
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4.2 X-ray tubes

The most common and ubiquitous source of X-rays is the high-vacuum tube, illustrated schemat-
ically in fig. 9. Conceptually, the X-ray tube has not changed greatly from the one built by W.
Roentgen (Nobel prize 1901). It consists of an electron gun — usually a thermoionic cathode —,
which produces a well-defined, mono-energetic beam of electrons. It is usually desirable to con-
centrate the electron beam in a small, intense spot, but other configurations (e.g., “line focus”) are
possible for particular applications. Typical laboratory devices are completely sealed tubes, and
run at 40–60 KV (up to over 100 KV for heavy-metal anodes) and 30-40 mA, for a total power
up to 3-6 KW. Higher powers require the rotating anode design to avoid excessive power loads,
but this requires active vacuum pumping and a rotary seal, which is less reliable. Recently, the
microfocus sealed tube has become increasingly popular, achieving a small, extremely intense
spot with very low overall power loads (∼ 40 W).

Figure 9: Schematic representation of an X-ray vacuum tube.

4.2.1 X-ray tube spectrum

A typical spectrum from an X-ray tube is shown in fig. 10 and consists of 2 components:

• The continuous spectrum, or “bremsstrahlung” (=“breaking radiation”). This part of the
spectrum is produced by the rapid deceleration of the electrons in the anode, due to a
variety of processes.
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• The characteristic lines, or emission lines. These are due to atoms in which one of the
core electrons has been ejected, due to interaction with the incoming electron beam. The
energy of the characteristic lines is the same as that of X-ray emission lines, such as
Kα1, Kα2, Kβ etc. (see section 2.3.)

• For monochromatic experiments, one generally employs the very intense characteristic lines.
The bremsstrahlung and some/all the other lines can be removed either by using a monochro-
mator (or analyser, see next lecture) or by a photon energy discriminator in the detector.

• The maximum photon energy is equal to the electron beam energy.

Figure 10: Typical spectrum of an X-ray tube.

4.3 Synchrotron sources

As we have seen at the beginning of this lecture, an accelerated charge emits electromagnetic
radiation. The characteristic radiation of a charged particle in circular motion is known as syn-
chrotron radiation. Parasitic synchrotron radiation was produced in cyclotrons (since the work
of Ernest Lawrence (1929)) and early particle accelerators , but it was not until the late seventies
that the first synchrotrons dedicated to producing synchrotron radiation were conceived. The
first synchrotron of this kind with the Synchrotron Radiation Source in Daresbury, in Cheshire.
All modern synchrotrons accelerate either electrons or positrons. A concise description is
contained in the international Tables for Crystallography vol. C [1], p 195. A complete derivation
of the relativistic case is given in [3], p 654f.
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Key facts about synchrotron radiation

• The power radiated by a charge in circular motion is proportional to the fourth power of the
electron energy, according to the formula:

P (KW) = 8.85× 10−2 [E(GeV)]4

R(m)
I(mA) (35)

where I is the circulating current (in mA), R is the radius of the machine in metres and
E is the electron energy in GeV. For example, for the Daresbury synchrotron, R = 5.5m,
E = 2GeV, I = 200mA and P = 51.5KW.

• In a synchrotron, the energy lost in the form of synchrotron radiation has to be restored to
the circulating electrons by a series of microwave cavities. The electrons themselves are
maintained in orbit by a series of bending magnets, which alternate with the cavities and
with magnetic focusing lenses to define and control the electron beam.

• In the non-relativistic limit, radiation would be emitted over the whole solid angle. However,
at these energies (several GeV), the electrons are in the extreme relativistic limit, and
emit radiation only in a narrow vertical fan. The opening angle is ψ = mc2/E ≈
25mrad at 2 GeV (see fig 11).

• Synchrotron radiation is essentially 100% polarised in the plane of the orbit.

• Synchrotron radiation has a continuous spectrum, ranging from the infra-red to the hard
X-rays and soft γ-rays. An important parameter characterising this spectrum is the char-
acteristic wavelength, given by

λc =
4π

3
R(E/mc2)3 (36)

The X-ray flux decays very rapidly for wavelengths shorter than the characteristic
wavelength (see fig. 12.

• In the early synchrotrons, synchrotron radiation was emitted primarily at the bending
magnets, and this is where the beamlines were located. In modern synchrotrons the
most intense radiation is produced by insertion devices (known as “wigglers” and “un-
dulators”), where the electrons undergo oscillatory motion.

4.4 X-ray detectors

Here, we have the space only for a fleeting reference to the main X-ray detection technologies
— for a complete survey, see the International Tables of Crystallography vol C [1], p 618.
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Figure 11: Radiation emitted by a synchrotron in the relativistic limit. The angle ψ is given by
ψ = mc2/E. The direction of polarisation is also shown. B is the magnetic field perpendicular
to the electron orbit, as generated by the bending magnet. The horizontal divergence is limited
by means of slits.

Photographic film was the earlies type of X-ray detector, and was still the commonest one until
the seventies. Photographic film is still employed in a variety of applications, particularly
for Laue diffraction. The blackening of the film (expressed in units of density) follows a
logarithmic law:

D = log10(Iincident/Itransmitted) (37)

Scintillation counters have two elements: a fluorescent crystal and a photomultiplier tube,
or PMT. The incoming X-ray photon generates a cascade of visible photons, which are
detected by the PMT. Importantly, the amplitude of the signal is proportional to the en-
ergy of the X-ray photon, so electronic discrimination schemes can be implement to reject
certain photon energies (e.g., the bremsstrahlung and/or or the fluorescence generated by
the sample).

Proportional gas tubes or ionisation chambers are gas-filled metallic tubes with a central wire
anode, maintained at a high voltage with respect to the tube wall. For appropriate pa-
rameters of the gas pressure, the amount of charge collected after an ionisation event is
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Figure 12: Photon energy spectra for (a) a bending magnet (b) two types of “wigglers” (insertion
devices). Note how the flux decays rapidly above the characteristic energy corresponding to λc.

proportional to the X-ray photon energy.

Multi-channel semiconductor detectors They are typically high-purity Si or Ge detectors, in
which the energy to create an electron/hole pair is 3.9 eV and 3.0 eV, respectively. The
number or electron/hole pair produced is proportional to the X-ray photon energy. The
charge “drift” in an applied electric field, and appropriate circuitry is implemented to anal-
yse the pulse heights and “store” the counts in a series of energy channels (“bins”). This
type of detector is popular for white-beam, energy-dispersive diffraction.

Position-sensitive detectors (PSDs) produce patterns in either 1 or 2 dimensions. In image
plates, the X-ray photon energy is stored on a 2-dimensional plate within phosphors, and
can be released by stimulation with visible light (photo-stimulated luminescence). The
plates are usually “read” using a laser scanner. This method has extremely good spatial
resolution and dynamic range, but requires a separate “read” step. Charge-coupled de-
vices (CCD’s), coupled to a fluorescent screed, are becoming increasingly popular for lab
diffractometers. Solid state PSDs, which are just coming to the market, have the added
advantage of counting each X-ray photon rather than simply integrating the charge, as is
the case for CCDs.
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5 Neutron production and detection

5.1 Introduction

The idea that atomic nuclei could contain neutral particles has been formulated essentially since
the time of Rutherford, based on the observation that the nuclear masses over most of the periodic
table were a bit more than twice the atomic number Z. It was speculated, at some point, that the
additional mass could be provided by additional protons and electrons, but it was soon realised
that the required confinement energy for electrons was much too large to be compatible with
electrostatic interactions.

In 1930, Bothe and Becker made a key experimental observation: bombarding a beryllium target
with α particles (from a 210Po source — polonium was discovered by Pierre and Marie Curie
in 1898) produced highly-penetrating, neutral radiation. The initial speculation was that this
was γ radiation, but Curie and Joliot showed that 5.3 MeV protons resulted when bombarding a
block of paraffin with this radiation — an observation that is inconsistent with reasonable photon
energies. James Chadwick is usually credited with the discovery of the neutron. By bombarding
targets such as nitrogen, oxygen and other gasses, he disproved conclusively the photon theory,
and was able to calculate the mass of the neutron, obtaining a result that is remarkably close to
the modern value (939.57 MeV).

Nowadays, a variety of neutron sources are available. Small, portable neutron sources based on
radioactive isotopes or small accelerators are employed commercially for a variety of applica-
tions. Neutron sources of relevance for the study of condensed matter are stationary, large-scale
facilities employing hundreds of staff and attracting experiments from thousands of scientists
every year.

5.2 Radioactive sources of neutrons

The sources originally employed by Bothe and Becker and Chadwick exploited a fusion reaction
between α particles (emitted by polonium or radium and light nuclei such as Li, Be or B). For
instance

4He + 9Be → 12C + n + 5.7 MeV (38)

Modern sealed sources, which are commercially available, usually employ 241Am, 238Pu or
239Pu as sources of α particles.

Another type of isotope-based source contains elements that undergo spontaneous fission, such
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as 252Cf .

These types of sources can produce 107-109 neutrons per second, and are mainly used to calibrate
neutron detectors.

5.3 Portable accelerators for neutron production

These sources work by accelerating deuterium (D) ions onto a deuterium or tritium (T ) target,
exploiting the fusion reactions:

D + D → 3He + n + 3.3 MeV

D + T → 4He + n + 17.6 MeV

(39)

These sources are also commercially available, and can generate in excess of 3×109 neutrons per
second. The main advantage of the sealed sources is that they can be turned off, so are much more
practical to use outside nuclear installations, and are employed for non-destructive materials
testing and for security applications (radiography).

5.4 Reactor sources

Nuclear reactors exploit the fission reaction

n + 235U → [two fission fragments] + 2.5n + 200 MeV (40)

which produces, on 2.5 (on average) neutrons per fission event (fig 13). Of these, 1 is requires to
maintain the chain reaction, 0.5 are absorbed and 1 escapes the core and is available for use. The
nuclear cross section for the reaction in eq. 40 is about∼ 1 barn for the fast neutrons emerging
from the fission event, but is 1000 barns for slow thermal neutrons (thermal energies in the tens
of meV range). Therefore, in most reactor designs, neutrons are slowed down (thermalised) by
means of a moderator — typically graphite (as in the Chicago pile CP-1, December 2, 1942),
water or heavy water.

The reactors commonly employed for research purpose are of the so-called swimming-pool de-
sign, where the reactor core, consisting of the fuel elements and the control rods, is situated in an
open water pool. The water acts at the same time as moderator, refrigerant and radiation shield.
Neutrons are extracted from the pool by means of tubes, known as “glove fingers”, which are
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Figure 13: A schematic representation of the fission nuclear reaction.

tangential to the core. In some cases additional sources (“cold source”, “hot source”) are placed
in the swimming pool to modify the neutron spectrum (see below). It is easy to understand that
the neutron flux is maximised by a compact core design. To achieve this, top research reac-
tors, such as the Institut Laue-Langevin (ILL) in Grenoble generally employ highly-enriched
uranium, although low-enrichment designs are preferred for non-proliferation purposes and are
actively researched.

Figure 14: Horizontal section through the reactor pool (internal diameter approx. 5m) of the
FRM-II research reactor in Munich — one of the most modern reactors worldwide. The larger
“swimming pool” is filled with light water, whereas the pool close to the core contains heavy
water. The tangential “glove fingers” of the neutron beam tubes — some pointing at the “hot”
and “cold” sources — are clearly visible.

The most powerful reactor source in the world is the ILL. It generates fluxes of 1.5×1015 neutrons
per second per cm2 at the exit of the beam tubes, with a thermal power of 58.3 MW.
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5.4.1 Neutron spectrum from a reactor source

A reactor source usually produces a continuous flux of neutrons (a remarkable exception is
the IBR-2 fast pulsed reactor in Dubna, Russia — a truly remarkable design!). The neutron
spectrum of the neutrons in the “swimming pool” is essentially a Maxwell-Boltzman distri-
bution centered at room temperature, with a high-energy tail due to a residue of the fission
neutrons and partially moderated neutrons. Monochromatic neutron beams can be produced
by means of a single-crystal monochromator — naturally, suffering a very large reduction
in neutron flux. These thermal neutrons are ideal for many neutron scattering applications,
but sometimes is is useful to have a higher flux of slower (cold) of faster (hot) neutrons. For
this purpose, special cold and hot sources are positioned in the reactor pool, with some of the
beam tubes looking directly at them. Cold sources are typically liquid deuterium at ∼ 25 K.
Hot sources are graphite blocks heated by the neutron themselves to around 900◦C.

5.5 Spallation sources

When a fast particle, such as a high-energy proton, bombards a heavy atomic nucleus (such as
lead, tungsten or tantalum), some neutrons are ”spalled,” or knocked out, in a nuclear reaction
called spallation. Other neutrons are ”boiled off” as the bombarded nucleus heats up, while the
fast neutron produce secondary spallation reactions with other nuclei (fig 15). These reactions
are much more efficient than fission at producing neutrons (20-30 neutrons are produced for each
spallation event), but, of course, one has to accelerate the protons in the first place to energies of
the order of to 0.5-2 GeV, using a linear accelerator (LINAC), a synchrotron or a combination
thereof.

Figure 15: Schematic representation of some of the nuclear processes involved in “spallation”
neutron production. Heavy-element nuclei are fragmented (“spalled”) either by the incident
protons (top) or by secondary neutrons (bottom left). Other nuclei are left in a highly excited
state and “boil off” additional neutrons (bottom right).
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The neutrons leaving the heavy-metal target are highly energetic, and need to be moderated
before they can be employed for scattering experiments. This is done in a series of moderators
that surround the target assembly (which usually includes a series of beryllium neutron reflectors
as well). As for the case of reactor sources, moderators can be held at different temperatures
to produce characteristic spectral distributions.

5.5.1 Continuous vs. pulsed spallation sources

The neutron flux from a spallation sources can be either continuous or pulsed, depending on
the characteristic of the accelerator. Although successful continuous spallation sources have
been built (for example, the SinQ neutron source at the Paul-Scherrer Institut in Villigen, near
Zurich, Switzerland), the preferred design is that of a pulsed spallation source. In fact whereas
the average neutron flux from a spallation source is 2-3 order of magnitude smaller than for a
reactor, the instantaneous neutron flux of a pulsed spallation source can be as high or higher
than that of a reactor.

In a pulsed spallation source, neutron of all energies are produced at the same time within
a few µsec (after moderation), and with a repetition rate of 10-60 Hz. The wavelength of the
neutrons can therefore be determined using the time-of-flight method, i.e., by measuring
the time elapsed between the pulse and the neutron detection. This removes the need of a
monochromator for most applications.
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5.5.2 Characteristics of a pulsed spallation source

A modern pulsed spallation source, such as the ISIS facility in Chilton, Oxfordshire (fig. 16),
comprises the following main components.

• The proton accelerator system. For ISIS, this consists of an ion source, a LINAC and a
rapid-cycling synchrotron. Proton pulsed from the LINAC are “stored” and accelerated
in the synchrotron to 800 MeV. Every 20 msec, a “septum” magnet in the synchrotron is
excited, redirecting pulses of protons of a few nsec in length to either of the two targets.

• The target-moderator assembly. The heavy-metal target (tungsten or tantalum) is located
at the centre of a beryllium reflector and is surrounded by moderators (water, liquid hy-
drogen or methane, solid methane). The moderators have to be relatively thin to preserve
a tight pulse structure. The whole assembly is contained in a heavy concrete/steel block
(the “monolith”), providing the radiation shielding.

• The beamlines look directly at the moderator surfaces. They can be simple collimating tubes
or complex neutron guides, which work with the same principle of an optical fibre.

• The instruments (spectrometers, diffractometers etc.) include a detector array, connected
with an electronic counting chain that can record the time of arrival of each neutron and
is synchronized with the proton pulse on the target. The wavelength of the neutrons can
therefore be determined by the Time-of-Flight method.

5.6 Neutron detectors

Essentially all types of X-ray detectors can be used to detect neutrons, provided that they are
coupled with a suitable neutron converter, i.e., an element that capture neutrons and produces
ionisation. The energy released in the neutron capture process (several MeV) is much larger
than the kinetic energy of the neutron (a few meV). Therefore, it has so far proven impossible
to build an energy dispersive (or even discriminating) neutron detector. On the other hand, pulse-
height analysis is used to discriminate neutron from γ events in the detector.

A neutron detector should be efficient, fast and insensitive to γ radiation. The most common
types of neutron detectors are:

• 3He tubes. It is essentially a proportional ion chamber filled with several bars of 3He, which
capture neutrons following the reaction in eq. 34. The proton and the triton are responsible
for the ionisation, which is detected by the chamber. Area detectors can be built as either
position-sensitive arrays of tubes or 3He 2-dimensional wire detectors.

• Neutron scintillators, employ scintillator glass or crystals doped with 6Li, either enriched or
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Figure 16: Schematic representation of the ISIS pulsed spallation neutron source, located in
Chilton, Oxfordshire (near Harwell). One can recognise the LINAC (topmost), the synchrotron
(top right) and the two target stations (left and bottom), surrounded by a series of beamlines.

in its natural abundance (7.5%). The scintillation event is triggered by the Li n-capture
reactions, as shown in 34. Scintillators can be tessellated in intricate shapes, or used to
build area detectors.
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6 Appendix I: Beyond the free electron approximation

6.1 Resonant scattering and anomalous corrections to the form factor

Here, we repeat essentially the same derivation that led to the calculation of the Thomson cross
section, but replacing the “free-electron” acceleration in eq. 4 with an expression appropriate to
a damped oscillator.

m
[
ẍ + γẋ + ω2

i x
]

= (−e)E(t) (41)

a(t) =
(−e)

m
εE0e

−iωt ω2

ω2 − ω2
i + iωγi

(42)

where ωi is the resonance frequency of each electron. If we use 42 instead of 4 in the previous
derivations, we obtain in general a complex scattering amplitude. It is easy to evaluate this
in the case ω À ωi, i.e., for example, for scattering of high-energy X-rays (> 20KeV ) from
first-period transition-metal ions. In this case

f(q) =
∑

i

[f(q)Thom]i

(
1− ω2

i

ω2
+ i

γi

ω

)
(43)

6.2 Compton scattering

One important issue related to the bound nature of electrons is the fact that no elastic scattering
is possible for a truly free electron, but the Compton formula applies instead:

k′

k
=

1

1 + ~ω
mc2

(1− cos γ)
(44)

At low photon energy, the photon momentum is transferred to the atom as a whole (much heavier)
or to the entire crystal, and the scattering is elastic to a very good approximation. As the energy
increases nearing the rest mass energy of the electron (mc2 = 511 KeV), the Compton scattering
cross section increases.
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7 Appendix II: Scattering of particle beams

As we have seen in the previous sections (eq. 8), a plane wave impinging on a quasi-free distribu-
tion of charges produces a spherical wave, the amplitude of which is proportional to the incident
amplitude E0. The coefficient multiplying the spherical wave is

r0 f(q) [cos ξ ε′σ + sin ξ cos γ ε′π] (45)

can be complex. In the general case, for a given wavelength, this coefficient depends on both
angular variables of the scattered beam, but for spherically-symmetric atoms it depends only on
the scattering angle γ = 2θ. Importantly, the cross section is equal to the square modulus
of the spherical wave coefficient. As we shall see shortly, the same principles applies to the
scattering of particle beams, provided that the particle beam is described quantum-mechanically,
so that the wave-like nature of the particles is apparent. Indeed, quantum mechanics is essential
to obtain exact results, although the essential features are often classical or semi-classical in
origin. In addition, it is often convenient to discuss the stationary problem rather than the time-
dependent problem of a single particle starting off far away from the scatterer. The stationary
problem is equivalent to considering a steady streams of particle coming from infinity, which is
partly converted into a current of scattered particles in the form of a spherical wave. Finally,
provided that we operate in the non-relativistic limit, we can consider the 2-particle scattering
problem to be equivalent to that of scattering from a static potential V (r), provided that the mass
of the particle is replaced by the effective mass

meff =
m1 m2

m1 + m2

(46)

Hereafter, we will simply refer at the effective mass as m.

7.1 Wavefunction equation for the static scattering problem

We are looking for the solutions ψ(r) for the following eigenfunction equation

(
− ~

2

2m
∇2 + V (r)

)
ψ(r) = Eψ(r) (47)

For the scattering problem, we are not interested in the bound states, so we will focus on the
continuous spectrum with positive eigenvalues. We also expect that, at long distances from the
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origin of the potential, the solution will approximate a plane wave (at least on one side), with
energy E = ~2 k2

2m
. By defining the new potential U(r) = 2m

~2 V (r) we arrive at the equation:

(∇2 + k2
)
ψ(r) = U(r)ψ(r) (48)

The solution of eq: 48 with the right side set to zero is clearly a plane wave

ϕ(r) = eik·r (49)

Eq. 49 represent the free-particle limit of the wavefunction, i.e., the incident wave. Therefore,
we will later employ 49 with k = ki.

An important step towards the solution of the general eq. 48 is to solve the point-source equation:

(∇2 + k2
)
ψ(r) = δ(r) (50)

The solutions of equations of the type 50 are known as Green’s functions. It can be shown rather
straightforwardly that the following two functions are solutions of eq: 50

G+(r) = − 1

4π

eik|r|

|r|

G−(r) = − 1

4π

e−ik|r|

|r| (51)

To verify that 51 are indeed solutions of eq: 50 it is sufficient to use the relation

∇2(ab) = a∇2b + b∇2a + 2∇a ·∇b (52)

The two solutions in eq. 51 are expanding and contracting spherical waves, respectively. By
selecting the former, we can rewrite eq. 48 in an integral form (we only write the solution with
the expanding Green function):

ψ(r) = ϕ(r) +

∫
dr′G+(r− r′)U(r′)ψ(r′) (53)

Since we are primarily interested in solutions far away from the region where the potential is non-
zero, we can employ a far-field approximation similar to that of eq: 16. The key observation here
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is that r′ is small, because the potential is non-zero only near the scatterer. Also, importantly,
|ki| = |kf | = k, since we are dealing with elastic scattering. The correspondence between eq.
16 and eq. 54 is clear if we write kf = kn

k|r− r′| ≈ kr − kf · r′ (54)

after some simple algebra we obtain (again, at long distances from the scattering centre):

ψ(r) = eik·r +

[
− 1

4π

∫
dr′ e−ikf ·r′U(r′)ψ(r′)

]
eikr

r
(55)

Eq. 55 has a very pleasing form: it is very similar to eq. 8, and we could surmise that the squared
modulus of the expression in square brackets (the “scattering amplitude”) is the cross section (this
is proven in most standard quantum mechanics textbooks by introducing the probability current
density). Here, we will take it for granted without further proof. Unfortunately, the scattering
amplitude in eq. 55 depends on the wavefunction itself. We can make progress by assuming that
potential is in some sense “small”, so that the spherical wave is a small component of the overall
wavefunction. We can therefore attempt to expand the integral term in series:

− 1

4π

∫
dr′ e−ikf ·r′U(r′)ψ(r′) ≈

− 1

4π

∫
dr′ e−ikf ·r′U(r′)ϕ(r′) +

(
1

4π

)2 ∫
drdr′ϕ(r′)

eik|r−r′|

|r− r′|U(r)U(r′) + ... (56)

The series in eq. 56 is known as the Born series; taking the first term alone is know as the first
Born approximation. It is easy to obtain the expression for the scattering cross section in the
first Born approximation; remembering that ϕ(r′) is the plane wave exp(iki · r′), we obtain:

(
dσ

dΩ

)

Born

=

∣∣∣∣
1

4π

∫
dre−iq·rU(r)

∣∣∣∣
2

(57)

where q = kf − ki. In other words, in the first Born approximation, the cross section is
proportional to the Fourier transform of the potential energy.

7.2 Elastic scattering of electrons in the 1st Born approximation

As a first example of scattering of a particle beam, we will consider the elastic scattering of
electrons from the Coulomb potential produced by the nucleus and by the electrons bound in an
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atom. For simplicity, we will consider electrons as spinless particles. Based on eq. 57, we need
to calculate the potential, and for this is useful to recall that

∇2e−iq·r = −q2e−iq·r (58)

Recalling that U(r) = 2m
~2 V (r) , we can rewrite the integral in eq. 57 as

1

4π

∫
dre−iq·rU(r) = − m

2πq2~2

∫
drV (r)∇2e−iq·r = − m

2πq2~2

∫
dre−iq·r∇2V (r) (59)

where the rightmost expression is obtained by integrating twice by part and assuming that both
the potential and its first derivative are zero at infinite distance from the origin. We can now use
Poisson’s equation and the expression for the charge density of an atom of atomic number Z:

∇2Φ =
ρ

ε0

(60)

V = (−e)Φ (61)

ρ(r) = Zeδ(r) + (−e)ρel(r) (62)

where Φ is here the electrostatic potential and ρel(r) is the same electron density we have em-
ployed for X-rays. To find the expression for the elastic scattering cross section:

dσ

dΩ
=

(
e2

ε0

m

2πq2~2

)2 ∣∣∣∣Z −
∫

dre−iq·rρel(r)
∣∣∣∣
2

(63)

We can see the immediate analogy with the scattering cross section for X-rays (eq. 23). The
integral term is exactly the same as the X-ray form factor, and is referred to as fX in the text. The
term in brackets takes the place of the classical electron radius, and is numerically

e2

ε0

m

2π~2
= 3.38× 10−10 m Å−2 (64)

whereas, for comparison, the classical electron radius is r0 =
e2

4πε0mc2
= 2.82 × 10−15 m. We

can see therefore that for all typical values of q (1–10 Å−1) employed for electron diffraction
experiments, the scattering amplitudes for electrons is much larger than for X-rays.
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The elastic scattering amplitude for electrons fB is often expressed in wavelength/angle units as
in eq. 65. One can find tabulated values for neutral and ionised atoms in the International Tables
for Crystallography, volume C [1], p 263 (λ is the electron wavelength and both λ and fB in eq.
65 are expressed in Å):.

fB(sin θ/λ) = 0.023934λ2[Z − fX(sin θ/λ)]/ sin2 θ (65)

7.3 Nuclear scattering of “slow” neutrons

By looking at tab. 2, it is immediately apparent that the kinetic energies of neutrons employed
is typical scattering experiments is much lower than the energies of nuclear reactions, which are
typically in the MeV range. In fact, it is established from nuclear physics that the neutron-nuclear
interaction can be approximated with a square potential well of depth V0 ≈ 50 MeV and range
d = 1.3A

1
3 × 10−15 m, where A is the mass number of the nucleus. It is therefore implausible

that the first Born approximation could be applied as such to the scattering of slow neutrons. In
fact, a more detailed calculation shows that the first Born approximation is applicable only to
neutrons with E > 25 MeV.

Nevertheless, Fermi proposed in 1936 that slow neutron scattering could still be satisfactorily
treated in the first Born approximation. The general idea here is that the wavelength of the
neutrons is so large that one can replace the real potential with a “pseudopotential” (known as
the Fermi pesudopotential), which yields the same first Born scattering amplitude and for which
the approximation definitely applies. For this, one observes that, over the range of the true
potential, the phase of the neutron is essentially constant in eq. 56, and the scattering amplitude
can be written as:

f = − m

2π~2

∫
drV0(r) = − m

2π~2
V0d

3 (66)

We could therefore think of decreasing the depth of the potential well into the thermal ranges
by increasing the range of the potential by a factor of, ∼ 100, while maintaining the same value
of the scattering amplitude and, crucially, still keeping the range much smaller than the neutron
wavelength — a set of conditions for which the first Born approximation definitely applies. This
conjecture led to the development of the Fermi pseudopotential, which has the form:

VF (r) =
2π~2

m
bF δ(r) (67)

where bF is the scattering length, known as the Fermi length. In practice, the Fermi pseu-
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dopotential is completely satisfactory to describe nuclear neutron scattering for diffraction ex-
periments, and only need corrections (analogous to the X-ray anomalous corrections) only for
energies near neutron-nuclear resonances.

Here are some important facts about neutron scattering lengths and cross sections:

• Neutron scattering amplitudes do not depend on q, i.e., they carry no form factor. For diffrac-
tion experiment this is crucially important, because it means that the intensity of the diffrac-
tion features does not decay at high angles as fast as in the case of X-rays (we will see
in the next lecture that thermal motion causes high-q Bragg intensity decay even in the
case of neutrons). They are also largely independent on the neutron energy, at least in the
regime of interest for neutron diffraction.

• Fermi lengths for typical nuclei are of the order of a few fm (10−15 m), which means that they
are comparable to the classical electron radius. However, atoms have a single nucleus and
many electrons, so X-ray scattering cross sections in the forward direction are typically
much larger than neutron cross sections. Neutron cross sections are traditionally measured
in barns (10−28 m2).

• Neutron absorption is also much lower than for X-rays, which, together with the previous
observation, means that attenuation (absorption + scattering) lengths are of the order of cm
for neutrons and of µm for X-rays. This has a profound effect on the design of diffraction
experiments exploiting the two types of radiation.

• Fermi lengths vary across the periodic table without any particular regularity. They can be
positive or negative depending on the sign of the nuclear potential. They depend on the
isotope, often very strongly, and also on the direction of the nuclear spin with respect to
the neutron spin. This has two main consequences, one “positive” and one “negative”:
the “negative” consequence is the presence of “incoherent” scattering, due to the random
mixture of different isotope and spin orientations, which contributes to the experimental
background. The “positive” consequence is the possibility to exploit different isotopes of
the same element to gain additional contrast.

7.4 The Fermi golden rule and its connection with the first Born approxi-
mation

In the previous sections, we have considered the Born series for a spinless particle beam, so
that there was no internal degree of freedom to consider. In addition, the internal state of the
scatterer (in our case a time-independent potential) was also unchanged during the collision.
Consequently, the energy of the scattered particle remains the same after the collision. It is
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useful to extend our description of the scattering to cases in which there are internal degrees
of freedom which may be altered in the collision. The Fermi golden rule (the development of
which is mainly due to Dirac) is widely employed to calculate the transition probability of an
eigenstate (in our case, a plane wave), into a continuum of “final” states due to a perturbation.
As in the case of the first Born approximation, it is the first term of a perturbative expansion,
and is applicable within very similar conditions to the first Born approximation, namely that the
final states do not significantly deplete the original eigenstate. Here, we only quote the general
result for the scattering cross section between states with wavevectors ki and kf and an internal
transition between states λi and λf with energies Ei and Ef , respectively.

dσ

dΩdEf

=
kf

ki

∣∣∣(m/2π~2)〈kf , λf

∣∣∣V̂
∣∣∣ ki, λi〉

∣∣∣
2

δ(~ω + Ei − Ef ) (68)

where we have employed the familiar 〈bra| – |ket〉 notation, V (r) is the “perturbing” potential
and ~ω = ~2(k2

f − k2
i )/2m, ensuring energy conservation.

It is a simple exercise to show that, for elastic scattering in the absence of internal degrees of free-
dom, the “golden rule” cross section in eq. 68 is exactly the same as the first Born approximation
result in eq. 57.

7.5 Magnetic scattering of neutrons

We will exemplify the application of the Fermi golden rule by outlining the calculation of the
scattering of slow neutron onto a magnetic atom. We will assume that no energy is exchanged in
the process. Here, the interaction potential is naturally the dipole interaction between the neutron
spin S and the magnetic field B(r) generated by the electrons(we will assume zero external
magnetic field for simplicity). When dealing with elastic magnetic scattering, the initial and
final states of the atoms are assumed to be the same, implying that conservation of linear and
angular momenta is ensured by the crystal as a whole. Therefore, the operator quantities (here
indicated explicitly with a “̂”) are only those acting on the neutron coordinates.

V (r) = −γNµN Ŝ · B(r) [Joules] (69)

where Ŝ is the neutron spin operator, γN is the neutron gyromagnetic ratio (−1.9130418) and
µN is the nuclear magneton ( e~

2mp
= 5.05078324(13) × 10−27 JT−1). The magnetic field of a

single electron moving with velocity v is

B(r) = ∇×
[

µ0

4π

µe × r̂
r3

]
+
−eµ0

4π

v̂× r̂
r3

(70)
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Where µe is the magnetic moment of the electron, given by (µB is the Bohr magneton, s is the
spin of the electron)

µe = −2µBs (71)

The two terms in eq. 70 represent the spin and orbital part of magnetic moment. The “hatted”
vector quantities in eq. 70 are meant as operators (so, for instance,

v̂ = −i~∇ (72)

The derivation of the cross section in in eq. 68, even in the general case of inelastic scattering
and is quite straightforward, and is reported, for example, in [2]. Here, for simplicity, we only
report the final result for elastic scattering of unpolarised neutrons, i.e., we are averaging on the
initial and final neutron spins:

dσ

dΩ
= γ2

Nr2
0Q†

⊥ ·Q⊥ (73)

where

• r0 is the classical electron radius. This means that the scattering amplitude for a neutron by
the magnetic field of a single electron is comparable to the Thomson scattering amplitude
of X-rays.

• Q is given by the formula (spin only scattering)

Q =
∑

i

eiq·risi (74)

and, in the general case, is the Fourier transform of the magnetisation density (spin +
orbital) for unpaired electrons. In simple cases,

Q = fm(q)µ (75)

µ is the magnetic moment of the atom and and fm(q) — the magnetic form factor — takes
the place of the X-ray form factor in the analogous expression for Thomson scattering.

• Q⊥ is the projection of Q perpendicular to the scattering vector q

Q⊥ =
1

q2
q×Q× q (76)
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in practical terms, this means that neutrons are only sensitive to the components of the
magnetic moments perpendicular to the scattering vector.

• If we take into account the direction of the neutron spins, the cross section will contain terms
of the kind Ŝ · Q⊥ and depends on the initial and final states of the neutron. For pure
magnetic elastic scattering, the cross section is non-zero only for opposite incident
and scattered neutron spins — we say that it is “spin flip” only.

8 Useful constants

ε0 = 8.854187× 10−12 F m−1 — vacuum permittivity

µ0 = 4π × 10−7 N A−2 — vacuum permeability (exact)

c = 2.99792458× 108 m s−1 — speed of light in vacuum

e = 1.602176487(40)× 10−19 C — unit charge

me = 9.10938215(45)× 10−31 Kg — electron rest mass

mp = 1.672621637(83)× 10−27 Kg — proton rest mass

mn = 1.674927729(28)× 10−27 Kg — neutron rest mass

r0 =
e2

4πε0mc2
= 2.82× 10−15 m — classical electron radius

µN =
e~

2mp

= 5.05078324(13)× 10−27 JT−1 — nuclear magneton

γN = −1.9130418 — neutron gyromagnetic ratio

µB =
e~

2me

= 9.27400915(23)× 10−24 JT−1 — Bohr magneton

9 Bibliography

The International Tables for Crystallography vol C [1] contains an excellent compendium
of most X-ray, neutron and electron diffraction techniques.

J.D. Jackson, “Classical Electrodynamics” [3]. I have follow this book for the derivation of
the classical X-ray scattering cross section. It is a very complete compendium of electro-
dynamics, although not always easy to digest...

42



A.S. Davydov, “Quantum Mechanics” [4]. I followed this rather old quantum mechanics text-
book (mainly for sentimental reasons) for the calculation of the cross sections in the first
Born approximation (Appendix II).
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