Lecture 6 — Defects in Crystals.

1 Introduction

In the first five lectures, we have focussed our attentions on the methodologies used to describe
crystal symmetry and on the scattering techniques employed to study the arrangement of atoms
and spins in crystals (electronic, nuclear and spin densities). Throughout this discussion, we
have explicitly assumed that the crystalline order is “perfect” — in other words, that translational
symmetry is strictly valid. The only allowance we made for deviations from one unit cell to the
next is through the introduction of the Debye-Waller factors, the effect of which, as we have seen,
is to “spread out” the scattering densities in a fashion similar to the atomic scattering factors. In
this lecture, we will explicitly consider crystal “imperfections” of different kinds, starting from
the simplest form of translational symmetry breaking (the effects arising from the finite size
of the crystals) and considering in turn other, more complex types of defects: “point” defects,
correlated defects and “line” or “plane” defects (dislocations or stacking faults). As we shall
see, all these defects give rise to particular kinds of scattering, most often away from the Bragg
peaks. We will also introduce a new experimental technique — transmission electron microscopy

— and describe its relevance in the study of crystal defects.

1.1 Space and time scales: coherence

When dealing with crystal imperfections, one of the first questions one should ask is whether
they will contribute coherently (i.e., amplitudes are summed) or incoherently (i.e., intensities are

summed) to the diffraction patterns.

Let us make this clear with a simple example: consider an inhomogeneous alloy, in which the
composition and the lattice constants varies on the scale of millimetres. Clearly, the different
regions of the crystal will scatter independently, each region being in essence a “perfect crystal”.
The result, therefore, with be the incoherent superposition of different patterns. In this example,
each hkl will produce a set of independent Bragg peaks (corresponding to the different lattice
constants), which will typically appear as a broadening of the scattered reflections. Let us now
imagine to “shrink” the lengthscale of the composition and lattice parameters fluctuations down
to nanometre sizes. Here, the different compositions will scatter coherently, and the appropriate
picture is that of an average lattice. In the different regions, the atoms will be displaced away
from the average positions, and this, as we know by now, will produce a reduction of the Bragg
intensity at high q, in complete analogy to the Debye-Waller factors. Furthermore, the displace-

ments will be correlated (i.e., nearby atoms will tend to be displaced in the same direction). Later



in this lecture, we will learn that this produces diffuse scattering away from the Bragg peaks. At
different lengthscales, he diffraction patterns will be therefore qualitatively different. At what
point, between millimetres and nanometres, does this qualitative transition occur? We can intuit
that the lengthscale where the transition occurs might be set by the probe, i.e., that there mat be
intrinsic coherence lengths for X-rays, neutrons, electrons etc. A very similar argument may
be construed for timescales. If the positions of the atoms in the crystal “fluctuate”, e.g., due
to phonons, do the different configurations occurring at different times contribute coherently or
incoherently to the diffraction pattern? If the timescale of the fluctuations if of the order of sec-
onds, the latter will be true, but, as the timescale of the fluctuations is reduced, this will no longer

be the case. What is the typical coherence time of the different probes?

A complete treatment of the correlation lengths and times is to complex to be presented here, but

the following points should provide a good idea of the issues involved.

e One distinguishes between transverse and longitudinal coherence lengths, perpendicular and

parallel, respectively, to the direction of the beam.

e For a quasi-parallel beam geometry (as it is typical of a diffraction instrument), the trans-
verse coherence length &, is proportional to the wavelength and inversely proportional to
the beam divergence o (§; = A/«). Here, the beam divergence is defined as the angle
subtended by the source as seen from the sample. The derivation is analogous to that of
the double-slit experiment, and corresponds to the distance between slits where the inter-
ference pattern is lost. For for typical diffraction instruments, the beam divergence varies
between a few mrad (lab diffractometers) down to a tenth of mrad (synchrotrons), so for
A\ = 1A, & varies between a few tens of nm up to about 1 um. Highly coherent X-ray
beams (several tens of um) are employed for special studies (lensless imaging, “speckle”
patterns), revealing the shape and internal structure of large crystal domains. Neutron

beams have comparatively relaxed divergences, and typical coherence lengths are 1000-
2000 A.

e For geometries employing focussing, (e.g., electron diffraction) it is possible to manipulate the
coherence domain by varying the focal plane where the diffraction pattern is formed (see
below). If the diffraction pattern is in focus, the coherence length is essentially limited by
the aberration of the lenses, and can be as large as for X-rays, in spite of the fact that the
wavelength employed are 1-2 orders of magnitude smaller. If the sample is in focus, the
transverse coherence length is much smaller (down to atomic sizes), so that each detector
pixel receives a coherent contribution of a column of atoms in the direction of the beam.
In this case, the coherence domain coincides with the resolving power of the instrument

(see below).



e The longitudinal coherence length is inversely proportional to the relative wavelength spread
of the beam: & = 3A/(AM/)). High-resolution monochromators at synchrotron sources
typically yield AX/A ~ 0.5 —1 x 1074, so at I A & is about 1 ym. The wavelength spread

of neutron and electron beams is typically 10 times and 100 times larger, respectively.

e The coherence time can be calculated using the uncertainty principle as 7 = h/AFE or from
the relation 7 = & /v, yielding the same result apart for a factor of the order 1. Adopting

the first approach, we obtain
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The prefactor is 1.6 x 107 [secA~2] for neutrons, 0.9 x 1077 [secA~2] for electrons and
5 x 1072 [secA~'] for photons. Using the wavelengths and monochromaticity values men-
tioned above, we find that coherence times for neutrons, photons and 100 Kev electrons

are in the picosecond, femtosecond and tens of attosecond ranges, respectively.

2 Finite size effects

Up to this point, we have consider the crystal lattice to be of infinite extent. As we have seen, the
cross section becomes then a series of delta functions, centered on the R L nodes. We can relax
our approximation by starting form eq. 6 in Lecture 5 (the cross section) and solve explicitly for
the finite summations. in fact, we need not make any particular approximation other than the fact
that the crystal should be composed of N;,/N, and N3 unit cell in the a;, a; and a3 directions,

respectively. Remembering that
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after some straightforward math (in each direction, x = q - a; ) we obtain
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The diffraction pattern from a small single crystal taken with coherent radiation, i.e., radia-
tion with coherence length (=wavepacket length/width) larger than the crystal, will display 3-
dimensional fringes, as typical of the function sin?(Nz)/sin? z. However, for typical experi-
ments with incoherent radiation, the number of unit cells is set by the coherence length of each
photon rather than by the crystal size, and the oscillations will be smeared out. In this case, we
can replace the oscillatory functions with a Gaussian function with the same maximum and same

arca:
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Observing that [ [, N; = N,, the total number of unit cell in the crystal, we obtain
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where the Gaussian functions have variance and FWHM
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We can therefore conclude that:

e The cross section at a given q is proportional to N2.
e The width in q is inversely proportional to the number of unit cells along that direction.

e The integrated cross section in three dimensions (remember the Gaussian integral v/ 2wo?)
is therefore proportional to N, which reproduces the result we obtained for the infinite
crystal (eq. 8, lecture 5).

3 Beyond the perfect-crystal approximation: diffuse scatter-
ing

Finite-size effects only generate scattering in the vicinity of the “ideal” Bragg positions, leav-

ing the integrated intensity of the reflection unaltered. In this section, we will demonstrate that
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additional scattering is generated whenever either the atomic scattering factors or the positions
of individual atoms deviate from the average values and/or the “ideal” lattice sites. In general,
this additional scattering is present throughout reciprocal space, and is therefore known as dif-
fuse scattering. In the remainder of this section, we will consider the deviations from perfect
periodicity as static. In other words, we will imagine that the scattering process occurs coher-
ently from a frozen snapshot of the crystal. To estimate the full scattered intensity, at the end,
we will undertake a time/thermal averaging process on the scattered intensities. This is a very
good approximation in the case of X-rays (and electrons), since the coherence times are much
shorter than phonon frequencies. For neutrons, where this is clearly not the case, a more complex

treatment is required, but qualitatively similar considerations (with some caveats) can be applied.

3.1 Classification of disorder in crystals

We will here consider two types of disorder:

e Substitutional disorder is typical of alloys and, more generally, of solid solutions. It occurs
when more that one atonic species can reside on the same crystallographic site, and gives
rise to a fluctuation of the atomic scattering factor around an “average” value, the latter re-
flecting the average composition of the alloy. For example, in a 67%Cu-33%Au “random”
alloy, Cu and Au occupy the same crystallographic sites of the FCC structure. To calcu-
late the Bragg scattering from such an alloy, one should use the average atomic scattering
factor (fuue(0) = 45.7). However, locally, the scattering factor varies between that of Cu
(feu(0) = 29) and Au (f4,(0) = 79). This local fluctuation, as we shall see, gives rise to
diffuse scattering. Substitutional disorder is almost always static, since atoms in alloys do
not usually move from one site to the next, but counter-examples do exist (e.g., in the case

of fast ion conductors).

e Dynamic displacive disorder is present in all materials even at zero temperatures, due to
phonons and zero-point motion. In addition to scattering contrast fluctuations, substitu-
tional disorder can itself produce static displacive disorder, since different species have in

general different atomic radii.

3.2 Simple diffuse scattering calculations

We shall now calculate the full scattering cross section for an (infinite) crystal in the presence
of both substitutional and displacive disorder. To simplify the formalism, we will perform this

calculation in the case of a crystal with one atom per unit cell, but the extension to more complex



structures is completely straightforward. Let us therefore re-write the cross section in eq. 6,

Lecture 5 in this case.
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In eq. 7, r; represent the actual positions of the atoms, while we indicate with R; the position of
the lattice nodes. Moreover, we will write

r, = Rz + u; (8)

where the u; are the displacements away from the lattice nodes and are “small” (see below). With

the additional notation R;; = R; — R; and u;; = u; — u; we can write:
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In eq. 9, we have rearranged the double summation, so that the rightmost sum runs over all
pairs of unit cells joined by a given vector R;;, whereas the leftmost sum runs over these vectors.

Using, for example, periodic boundary conditions, we find that for each R;;, there are exactly NV

ij
pairs of sites joined by it (/V being the total number of atoms in the crystal. We can therefore

re-write eq. 9 as:
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We can subtract from eq. 10 the Bragg scattering cross section to obtain the expression for the
non-Bragg or diffuse scattering (we stress, once again, that the average atomic scattering factor

is used to calculate the Bragg scattering):
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where the sign ()g,; indicates the average of the quantity within it over all the pairs in the coher-

ence domain joint by the vector R;;.



3.2.1 Diffuse scattering from uncorrelated substitutional disorder

Here, we will make the slightly unrealistic assumption that the atoms are not displaced at all
from their ideal lattice sites, and consider the diffuse scattering arising from purely substitutional

disorder (u;; = 0). We can write
do »
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If the sites have random occupancy, for ¢ # j the average is identically zero for all R;;, so only

the autocorrelation term ¢ = j survives, yielding
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For example, for a binary alloy with species A and B and concentrations C'4 and 1 — C4, we

obtain
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As we can see, these cross sections are slowly varying in ¢, since they are only modulated by the

atomic scattering factors, and have their maximum near ¢ = 0.

3.2.2 Diffuse scattering from uncorrelated displacements

Let us now assume that we have a single atomic species (f; = f; = fqe) and that the displace-

ments of atoms 7 and j are not correlated with each other. If 7 £ j,

(7MY = (g=iam) (gians) = =2V (15)

so R;; vectors joining different atoms do not give any contributions to the diffuse scattering. The

only surviving term is the autocorrelation term, for which u;; = 0. Therefore,

do 2 2 -2
(5), = ViPOIs@F (1) (16)




As we can see from eq. 16, the diffuse scattering from uncorrelated displacements is a slowly
varying function of q; it is zero near the origin of the reciprocal space and increases with g (it is
in the first approximation proportional to ¢?), only to decay again with the decay of the atomic

scattering factors.

3.3 General treatment of displacive disorder and thermal diffuse scatter-
ing

In the two simple examples we proposed above, we have treated the deviations from the average
structure as completely uncorrelated from site to site. The result, in both cases, is a form of
diffuse scattering that has very little structure in reciprocal space. In the extreme case of neutron
studies of substitutional disorder, the atomic form factor is a constant, and the resulting diffuse

scattering is completely flat.

In realistic cases, correlations are almost always present: even in disordered alloys, a given
species may have a “preference” to be surrounded by atoms of the same kind or, quite frequently,
of a different kind, so near-neighbour probabilities are generally different from the average.
These correlations are lost after a few unit cells, and they are referred to as short-range or-
der. In this case, beside the autocorrelation term, additional terms in the summation (eq. 12) will
be non-zero, giving rise to a more structured diffuse scattering pattern. Note that each R;; pair
that corresponds to a definite correlation will contribute with a Fourier component ezp(R - R;;)

(or cos R - R;; in the centrosymmetric case) to the diffuse scattering.

The correlated displacements due to thermal vibrations are of even longer range: an ideal plane-
wave phonon involves all sites of the crystal, and therefore involves all terms in the summation
(eq. 11). The correlation terms u;; will typically involve sums and differences of sines and
cosines, and since they appear in the exponential, the summation over an infinite number of pairs
cannot be performed analytically. The typical approach is to expand the exponential in Taylor
series. This is done as follows: for simplicity, let us rewrite eq. 11 in the case of pure displacive

disorder (no substitutional disorder):
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Next, we will use again eq. 13, Lecture 5, which is valid for small displacements or harmonic

displacements:
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Finally, we expand the exponential in eq. 18 in Taylor series:
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The different terms in eq. 19 are known as first-order, second-order etc., diffuse scattering.

3.3.1 First-order thermal diffuse scattering

In well-ordered crystals, the most important contribution to the diffuse scattering is that from
the displacement patterns due to phonons. This type of diffuse scattering is known as Thermal
Diffuse Scattering or TDS. The first-order term in eq. 19 is often the dominant contribution,
particularly at moderate temperatures. The calculation of diffuse scattering for monoatomic solid
is not inaccessible at the present level, but it is rather lengthy. Here, we summarise the main steps

and present the final result, so that its structure can be analysed.

e Only phonons with the same wavevector k and the same branch index contribute coherently
to first-order TDS. The scattering from one such phonon is not difficult to calculate: it

generate satellite peaks at +k around any given Bragg peaks.

e One needs to sum the scattered intensity of phonons with different wavevectors, taking into

account the fact that their amplitude is related to the thermal population.

e The final result is:

d_O' = 2 i 1 th'(q) ' 2
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where the sum is over the different phonon branches and

Fi(q) = f(@)e™" [a- e;(q)] Q1)

is the so-called one-phonon structure factor and e;(q) is the polarisation vector of phonon
branch j at the wavevector q. In order to evaluate the quantities €;(q) and w;(q), one needs

to reduce q to the first Brillouin zone in the usual way.
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° i ( ( ST ) decreases rapidly with increasing frequency. Therefore low-

energy, acoustic phonons provide the largest contribution to first-order TDS. For the
same reason, the TDS diverges at the Bragg peak positions and is minimum between the
Bragg peaks.

e When the same reduced wavevector is considered in different Brillouin zones, one finds that
the cross section is proportional to ¢2, similar to the diffuse scattering due to uncorrelated

displacements (eq. 21).

4 Scattering from non-crystalline solids and liquids

Our discussion of the scattering cross sections for “defective” crystal would not be complete
without a mention of the most extreme form of defects — the complete loss of crystalline order,
as in the case of non-crystalline solids (glasses) or liquids. In this case, it is no longer possible
to define a crystal lattice; nevertheless, the formalism to calculate the scattering cross section is
very similar to the one we have already encountered (eq. 9). The main difference is that, for
obvious reasons, decomposing position vectors in R;; and u;; will no longer make sense, and we

will therefore employ the original notation r;;

3P0 Y S (@) (22)

m=1 r;;

where the first sum runs over all the atoms in the sample. For simplicity, we will proceed from
here assuming that all the atoms in the sample are the same, as appropriate, for example, for a
monoatomic liquid like mercury. The extension to polyatomic liquids or glasses is rather straight-
forward but requires a heavier notation. With our assumption, we can extract N |f(q)|? from all
the summations and replace the sums with averages; we will also isolate the autocorrelation term

(r;; = 0) which yields 1:

do

o 2 2 —i rZJ
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We now want to take advantage of the fact that, in a disordered sample, if a vector r;; connecting
two atoms is present, then all other vectors with the same modulus r;; will also be present with
equal probability somewhere in the sample. This will enable us average over the angular variables

and replace the summation in eq. 23 with a sum over r;;. In doing so, we have to account for the
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fact that any given atom may be surrounded by more than one atom at the same distance r;;, and

we will do so by introducing the average coordination number n(r;;).

do

- = NrgPO)IF(@P {1+ D nlry)— I / e~ i3 050 gin Odfdg (24)
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The integral is straightforward and yields 47 sin qr;; /qr;.

do sm qri;
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The structure of eq. 25 clearly illustrates the main feature of the scattering form non-crystalline
materials: the cross section only depends on ¢, so the scattering will occur as uniform spheres
in reciprocal space. Analysis of the scattering will provide information about the average co-
ordination number at every distance 7;; around a given atom. More details about this, with
particular reference to the Pair Distribution Function analysis method, are provided in Appendix
I (see also [2]).

5 Other defects in crystals: point defects, dislocations and
planar defects

In this section, we will be concerned with a few additional modes of departures from perfect
crystal ordering, known as point defects, dislocations and planar defects. These defects are
associated with points, lines or planes in the crystal, and move slowly or not at all, so they can

generally be considered as static, as far as diffraction is concerned.

5.1 Point defects

A point defect occurs when the crystal periodicity is primarily broken at one lattice site or at
a few adjacent sites, although its influence can propagate far away into the crystal (see below).
The simplest examples of a point defect are substitutions vacancies and interstitials, in which,
respectively, atoms on a given site are replaced by a different species, are absent altogether or
occupy a position that is usually unoccupied. Substitutional disorder in alloys can be thought
as an extreme example of a high density of point defects. Point defects often occurs in pairs up to
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maintain stoichiometry or charge neutrality, as in the case of Frenkel defects (a vacancy and an
interstitial) or Schottky defects (vacancy of ions with opposite charge). In the case of extended
defects, the coordination environment around the defect site is modified to approximate the pre-
ferred environment of the new species. For example, if a cation with a preference for tetrahedral
coordination is substituted on an octahedral site, the six surrounding anions can be distorted and

one or two can be missing altogether, forming an extended defect.

If present in sufficient concentration, point defects can give rise to diffuse scattering, in com-
plete analogy to substitutional disorder. Another form of diffuse scattering associated with point
defects is Huang scattering: this arises from the static displacement field due to the elastic de-
formation of the lattice around the defect, and its treatment is analogous to that of first-order
TDS.

5.2 Dislocations

Dislocations are linear defects that commonly form in metals as a result of the application of
stresses, e.g, due to repeated bending. They play an important role in both the strength and the
failure of materials: work hardening (such as beating a red-hot piece of metal on an anvil)
has been used for centuries by blacksmiths to introduce dislocations into materials, increasing
their yield strengths. On the other hand, the infamous metal fatigue fracture (responsible, for
example, for the De Havilland Comet disasters) are initiated by dislocations, which eventually

form persistent slip bands that nucleate short cracks

Two main types of dislocations are identified: edge dislocations and screw dislocation, although
most real dislocation are intermediate between these types. They are characterised by two direc-
tion vectors: the dislocation direction — the direction of the linear structure in question, and the

Burgers vector — the principal direction of the strain (displacement) field near the dislocation.

5.2.1 Burgers vectors for edge and screw dislocations

The classic definition of the Burgers vector is the following (see fig. 1 and 2): Let us consider
a part of the crystal that is free from any defect, and let us define a closed loop of atoms. Let
us now insert the dislocation so that the dislocation line is inside and perpendicular to the loop.
The strain (displacement) field generated by the defect will displace the existing atoms, so that
the rectangle will be deformed, whilst, by definition, remaining a closed loop. If the rectangle is
deformed into a trapezium, the Burgers vector will be perpendicular to the dislocation line (edge
dislocation, fig. 1). If the rectangle is deformed into a 3-dimensional shape, the Burgers vector
will be parallel to the dislocation line (screw dislocation, fig. 2).
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Figure 1: An edge dislocation and its associated Burgers vector. An edge dislocation arises when
a plane of atoms is abruptly terminated within the crystal. The displacement field around the
edge dislocation is defined by its Burgers vector, and, is perpendicular to the dislocation line.

Screw dislocation

b in slip direction

b along
dislocation line

Figure 2: A screw dislocation and its associated Burgers vector. We can imagine that a screw
dislocation is generated by “slicing” a plane through the crystal up to a certain line, and by dis-
placing the atoms on one side of the plane by one unit cell along the direction of the line. The
displacement field around the edge dislocation is defined by its Burgers vector, and is perpen-
dicular to the dislocation line.

5.3 Stacking faults

The last family of crystal defects we will consider in this lecture are the planar defects. As
the word implies, the defect originated at a planar locus in the crystal, although the strain field
can propagate some way away from the plane. Although other types of planar defects exist (for

example, the twin planes), here we will only consider the stacking faults.

Staking faults are defects in the “stacking” of atomic layers — most commonly a fault in the
stacking sequence of the layers, a missing layer or an added layer, either of the same type or of
a different type with respect to the bulk layers. Unsurprisingly, stacking faults are common
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in layered structures, but are also encountered in isotropic structures: in fact, perhaps the best
known type of stacking fault occurs in FCC metals, and is a fault of the ...ABCABCABC...
stacking sequence of the (111) layers, as, for example, in ...ABCABABCABC... Stacking faults
of this type can be described as a displacement (slip) of an entire plane of atoms perpendicular
to the fault plane, so that the fault is described by two vectors: the stacking vector (perpendicular
to the fault plane) and the slip vector, describing the displacement direction of the plane of atoms.
The slip vector plays a similar role to the Burgers vectors in the imaging of stacking faults by
TEM (see below). In this case of the (111) faults in FCC metals, the slip vector is along the
(211) direction or its equivalents (fig. 3).

211

115/ N

Figure 3: A: a portion of the unfaulted FCC structure, with stacking sequence ...ABCAB-
CABC....B A stacking fault, in which the “A” layer is inserted instead of a “C”, and the cor-
responding possible slip vectors.

6 Experimental techniques: Electron Microscopy

6.1 Rationale and brief history of electron microscopy

In the absence of aberrations, the resolving power of a microscope is given by the well-known
formula R = kA /n sin «, where ng sin « is the numerical aperture, ng is the refractive index in
object space and « is the semi-angle subtended by the object at the lens (or stop). The constant x
depends on the coherence length of the light, but the typical value of 0.61 is generally adopted.

14



For visible light (e.g. 550 nm), the largest achievable numerical apertures is about 1.6, yielding a
“ diffraction limited” resolution of about 200 nm. X-ray beams have much shorter wavelengths,
but X-ray lenses are complex, high-precision objects and are limited to very small numerical
apertures. With wavelengths of a few hundredths of A (Table 1) and the possibility of achieving
numerical apertures comparable to those of optical microscopy, a microscope based on an elec-
tron beam should be able to resolve feature well below the inter-atomic spacing. In practice, the
resolution of an electron microscope is limited by optical aberrations rather than diffraction, but

resolutions below 1 A have been achieved in recent years.

After the verification of the De Broglie hypothesis, the next important step towards a practical
electron microscope has been the the development of the magnetic lens (H. Busch, 1926, fig.
4), followed by the demonstration of focussing by electric fields. These discoveries led to rapid
progress, so much so that the first electron microscope was constructed by M. Knoll and E.
Ruska in 1931. This first instrument worked in transmission, like the modern-day Transmission
Electron Microscope or TEM, and had a resolution of several nm. The TEM was later developed
as a commercial device, and now reaches routinely resolutions of the order of 1-2 A, with sub-A

resolutions having been demonstrated in specialised instruments.

A .

!

Figure 4: Schematic representation of a TEM magnetic lens. The trajectory of the electrons in
this lens is quite complex, so that the image is rotated as well as magnified.

A different type of electron microscope, known as Scanning Electron Microscope or SEM, was
builtin 1938 by M. von Ardenne, following a suggestion by Knoll. In the SEM, the electron beam
is electrically “scanned” across the surface of the sample producing a small spot, and a response
(backscattered electrons, Auger electrons, X-rays etc.) is measured. An image of the sample
is then formed on the screen using the measured variable. The importance of both TEM and
SEM for materials science cannot be overstated. However the TEM has been far more important

to solve problems in structural condensed matter physics, and we will therefore limit our brief
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discussion to the Transmission Electron Microscope.

Table 1: Electron wavelengths and energies and the corresponding TEM techniques. For non-
relativistic electrons, A = h(2meV)~! = 12.26V~! A. HEED wavelengths are corrected for
relativistic effects (~ 5% at 10° V.)

V(volts) X (A) vic name

10 39 0.006 LEED
102 1.2 0.02 LEED
10° 0.39 0.06 MEED
10* 0.12 0.19 MEED
10° 0.037 054 HEED
10° 0.009 094 HEED

6.2 The TEM: working principle and operating parameters

Very schematically, a TEM can be described as follows (fig. 5):

e A quasi-monochromatic beam of electron is produced and accelerated to a working voltage
by an electron gun. The electrons are emitted by either a thermoionic filament or, in
modern instrument, by a field-emission source, which is more monochromatic and has

much higher brightness. The relation between accelerating voltage and wavelength is:

)= h ~12.26
v 2meV VV

Typical accelerating voltages and corresponding wavelengths for various applications are

(26)

shown in tab. 1.

e A series of magnetic lenses, collectively known as the condenser, create a spot size on the
sample that can be varied with the excitation current of the magnetic lenses, but can be as
small as 1 pm. This spot defines the field of view of the instrument, and it is ultimately
imaged on the screen, yielding magnifications in excess of 300,000. The beam divergence

on the sample is of the order of 1073 radians, so it can be often considered as quasi-parallel.

e The sample stage consists of a sample holder (the sample — either a very thin section or a
series of grains from a powder sample, is usually supported by a fine carbon mesh) and a
titling stage, which enables the sample to be oriented so that different “zones” are brought
into Bragg condition (see below). Since the sample itself is very thin (usually < 10004),
a significant fraction of the electrons are either transmitted or undergo Bragg scattering —
in both cases emerging as quasi-parallel rays. Because of the very short wavelength and

the decaying atomic scattering factor, electron scattering is strongly peaked in the forward

16



direction and the whole diffraction pattern is concentrated within 1-2 deg for 100 KeV

electrons.

e Immediately below the sample the objective lens brings parallel rays emerging from the sam-
ple into focus on the so-called back focal plane. In other words, both the direct beam and
each of the Bragg reflections will be brought into a distinct spot on the back focal plane,
forming a diffraction pattern. Here, a series of diaphragms (diffraction apertures) can
be inserted to select the direct beam and/or one or one or more of the Bragg spots. The
microscope is said to operate in (bright-field mode) if the transmitted beam is allowed to

propagate beyond the diffraction apertures.

e Below the back focal plane, a series of lenses and apertures known collectively as the pro-
jector magnify and focus the electrons the so that the image of the spot fills the viewing

screen.

e The image is formed on an electron detector, which was a simple phosphor screen in the early
models, and has now evolved in a much more sophisticated and sensitive device such as a
CCD or a solid-state detector.

Specimen S

TEM

Back focal - - — — ;ﬁ.pgr"l‘urg
plane 1st image plane
Diffraction
lens
Intermediate

¥
D=4

Final diffraction pattern Final image

L—"%

Figure 5: Schematic representation of a TEM in diffraction mode (left) and imaging mode (right).
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6.2.1 Diffraction and imaging modes of operation

Broadly speaking, the TEM can be operated in two modes (see again fig. 5):

Diffraction mode: the projector brings into focus onto the detector a magnified image of the
back focal plane, so that the diffraction pattern from the sample appears on the screen.

Imaging mode: here, the projector brings into focus onto the detector a magnified image of the
sample spot, so that an “image” of the sample is created. Unlike conventional microscopy,
where the contrast is primarily due to differential absorption of light, for crystalline sam-
ple, contrast in TEM is primarily due to a modulation of the strength of diffraction
from different parts of the sample. The role of the diffraction apertures should become
clear at this point: by propagating electrons that have undergone different Bragg reflec-
tions, one may obtain different types of contrasts. Thiks is particularly important in the

study of dislocations and stacking faults (see below).

6.3 Electron diffraction: basic principles

The kinematic of electron diffraction is governed by the fact that, in a typical TEM, electron
wavelengths are much shorted than the accessible d-spacings — in other words, |k;| =
lkf| > |q|. In addition, the thickness of the sample is much smaller than the spot size, so
that (by finite-size effects) the Bragg spots will be elongated in the direction of k;. The resulting
Ewald construction is shown in fig. 7. From this, it is clear that a sizeable portion of a RL
plane can be brought into (approximate) Bragg scattering condition by setting k; to be per-
pendicular to this plane. An estimation of the scattered intensity for each Bragg spot, using the
kinematic approximation, is provided in Appendix II. The plane in question always contains the
origin of the RL, and is known as zeroth-order Laue zone [xyz], where [zyz] is the real-space

direction orthogonal to it. .

When operating in diffraction mode, a TEM generates a fairly undistorted picture of a
slice of reciprocal space corresponding to a zeroth-order zone (see fig. 6). If the electron
energy is not very high, peaks from the first-order zone may become visible near the edge
of the diffraction pattern.

Example: in a monoclinic crystal, the electron beam is directed along the [110] direction

in real space. The corresponding zone will contain the origin of the RL and the two RL
vectors (110) and (001).

Because of the large cross section for electron scattering, dynamical diffraction is always
required for quantitative calculation of electron scattering intensities. This means that struc-
tural solution from electron diffraction is a highly specialised field of electron microscopy.
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Figure 6: Sets of electron diffraction patterns of the multiferroic material YMn0.75Ti0.2503
showing the (a) [001], (b) [110], (c) [110], and (d) [540] zone-axis. From T. Asaka, et. al
Physical Review B 71, 014114 (2005)

6.4 TEM imaging: basic principles

When operating in imaging mode, the projector lenses of the microscope create onto the detector

an image of the sample. If a wide open diffraction aperture is employed, the transmitted beam
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Figure 7: Ewald construction for electron diffraction.

and all the diffracted beam coming from one specific point in the sample are made to interfere
at one specific pixel on the detector, and the contrast on that pixels results from the interference
of these rays. By inserting appropriate diffraction apertures, one can select the transmitted beam
alone and/or one or more diffracted beams. The simplest situation is that of dark-field imag-
ing with a single reflection, since only one diffracted beam needs to be considered. Even this

apparently simple scenario is rather complex to assess quantitatively:

e The “circle of confusion” of the imaging process is far from the diffraction limit, and is always

dominated by the aberration of the optics. For a typical TEM, this is of the order of 1-2 A.

e In the direction of the electron beam, the depth of field of the optics is generally sufficient to
keep the whole thickness of the sample close to focussing conditions, although fine-tuning

of the focus can have a dramatic effect on the contrast.

e To assess the contrast in the first approximation, therefore, one has to consider interference
between the scattered beams from a column of atoms, contained in a cylinder defined by

the circle of confusion of the optics and the thickness of the sample.

In the case of a perfect lattice, the imaging contrast has the periodicity of the lattice, and
this can be easily distinguished at sufficient resolution.

Fig. 8 shows a typical example — a high-resolution lattice image of SizN,. A clearly distin-
guishable grain boundary runs irregularly from the bottom left to the middle right of the image.
The two grains have different orientations, and show different periodicity. In some images, one
would be tempted to identify the repeated pattern with the content of the unit cell, as if one was
looking at individual atoms, but this is never the case: a complex calculation involving dynamical

diffraction end the exact focus condition is always require for realistic lattice image simulations.
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Figure 8: High-resolution image of a grain boundary in SigNy.
6.4.1 TEM imaging of dislocations and stacking faults

One of the most successful applications of the TEM has been the imaging and identification of
lattice defects — particularly dislocations and stacking faults. As we have seen, a dislocation or
stacking fault is characterised by the fact that a portion of the crystal, either around the dislocation
line or across the stacking fault, is displaced with respect to the rest of the crystal by a vector b,
which is known as the Burgers vector in the case of dislocations and the slip vector in the case
of stacking faults. The structure factor F; of the “faulted” region will be therefore related to that
of the unfaulted region by:

Fy(q) = F(q)e P (27)

We remind that here the scattering vector q is selected using the diffraction apertures. The
intensity scattered from a column (corresponding to the contrast of a pixel) can then be written

as

2

N1 N2 N.
I/IO o |F|2 Z e*iNQ'az + Z efiNq-(az+b) + Z e*iNq~az (28)
N=0 N=1 N=2

were we have assumed that the faulted region is delimited by N; and N, along the column.
We could elaborate further on eq. 28, but here it will suffice to say that the fault will have
maximum contrast if the vector q along the Burgers or slip vector b, and will be invisible
if g L b. By taking a series of dark-field lattice images using different Bragg reflections, it is
therefore possible to identify both the direction of the dislocation line or fault plane (which is
simply the direction of the contrast in the lattice image) and the Burgers or slip vector, which
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are perpendicular to the Bragg reflections for which the defects become invisible (see fig. 9).

Figure 9: Reproduced from [1], fig 4.16. Images of dislocations in stainless steel. On each
picture, the (hkl) of the reflection employed to create the image is marked with an arrow. Left:
Image taken with a (111) reflection: many dislocations are in contrast. Right: Image taken with
a (113): most dislocations are out of contrast. This analysis indicates that most dislocations have
(111) Burgers vector.
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8 Appendix I: the pair distribution function analysis

Let us continue on from eq. 25 and introduce a continuous function p(r;;) (of dimensions [m~3])
representing the “local number densities” of atoms at a distance 7;; around a given atom (exclud-
ing itself). The function p(r;;), known as the pair distribution function will be zero at short
distances and will have a sharp peak corresponding to the first coordination shell, with further
oscillations corresponding to more distant correlations At long distances, p(r;;) will converge
to the average density p,. For a typical glass, this occurs at distance of the order of 10-20 A,
whereas for a crystal the oscillations persist to very long distances. Observing that(we drop the
subscripts 77 at this point)

n(r) = 4mr?p(r)dr (29)

we replace the sum with an integral in eq. 25 and write:

do

oo = NP [1+ [ i)

sin qr
qr

(30)

If we now write p(r) = p, + Ap(r), where Ap(r) represents the deviation from the average
density, we can show that the term containing p, fluctuates rapidly (except at very low ¢, where
data are usually not measured since they merge with the transmitted beam), and averages out

between different domains of scattering. We thus obtain the final form:

do 5 9 o 9 sin gr
o = VPO |1+ [ drimapn) ™ 61)
Let us now introduce the function
2 g1 do
S(g) = (NrgPOIF(@I) o (32)

which can be directly extracted from a scattering experiment, after appropriate normalisation and

correction of the data. By using the properties of the Fourier transform we find:

1
212y

p(r) = pa + / dq[S(q) — 1] gsingr (33)
0

Clearly, it is impossible to measure S(g) up to ¢ = o0, so the Fourier transform procedure as

applied to “real” data will introduce truncation errors, which can be mitigated by applying
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various procedures.

The Pair Distribution Function (or PDF) analysis method is widely used not only for liquid
and amorphous substances, but to disordered (and sometimes rather well ordered) crystalline
materials, where it claims to provided an unbiassed determination of the “true” bond lengths.
When PDF analysis is applied to crystals, both Bragg and diffuse scattering are included yielding
a picture of the local structure (as opposed to the average structure from Bragg scattering).

9 Appendix II: electron scattering from a thin section of sam-
ple

In this section, we give a quantitative calculation for the scattered intensity in the kinematic
approximation. To be realistic, this calculation can only be applied to a very thin section of the
sample, since, as we already mentioned, the elastic scattering cross section of electrons is so large
that dynamic effects are dominant. In this scenario, the electron beam illuminates a region of the
sample of, say, 1-2 ym in size, and are partly transmitted, partly scattered through a section a a
few tens of A. We also recall that electron scattering is strongly peaked in the forward direction
and is concentrated within 1-2 deg for 100 KeV electrons. The Ewald construction appropriate
for this problem is shown in fig. 7. When the incident beam is along a real lattice vector, several
Bragg peaks of the “zeroeth-order zone” (i.e., the RL plane perpendicular to that vector and
containing the origin) will be close to scattering conditions, so that a portion of the diffraction
pattern for that plane will appear on the screen. Bragg peaks that are progressively more distant
from the origin will be cut by the Ewald sphere “above” the ideal Bragg position. Here, we want
to calculate the integrated intensity, i.e., the number of electrons collected by the film or CCD,

of each of these reflections in the kinematic approximation.

Let us define the z axis in the direction of the beam, = and y being the lateral coordinates. In
analogy to what we have done before, we will consider the lateral extent of the sample to be
infinite, so that the cross section will contain a 2-dimensional delta function. By contrast, we

will consider explicitly the finite size of the sample along z. We therefore write

— = LT 6(g,)6(qy) — 2| F)?
ds2 gy (42)0(g) sin2(%qzaz) |1
47)2N, N, sin?(1V.q.a.)
o B 5050 T 34

Where F' is the structure factor and has the dimension of a length. In the geometry we are

considering (fig. 7)
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7 = o2 0daday (35)

We can therefore integrate in df2

AN N A?sin®*(5N.q.a.)

Vol 2

o |F? (36)
Here, vy = agaya, is the unit cell volume. Now, let multiply by the incident flux, which we will
write as &y = Iy/(N,Nyaza,), where I; is the number of incident electrons per second. This
is appropriate, since here the lateral dimension of the sample (i.e., N, /V,) is defined by the spot

size. We thus obtain the scattered intensity (again, in electrons per second) in a given reflection.

Ikl |20Fy|” sin®(2q.t)
— (37)
Io Vo qz
Where we have introduced ¢ = N,a, — the thickness of the sample. The quantity
Vo
= (38)
S 2AFpp

has the dimensions of a length, and is known as the extinction distance. As we can see, the in-
tensity has a central maximum and a series of subsidiary maxima. The height and width (distance

between the two nearest minima) of the central maximum are:

n - (8)

W = (39)

One can see that when the thickness ¢ is equal to §,, I = 1 and the scattered intensity is equal to
the incident intensity (total reflection). This is a clear signal that the kinematic approximation
is no longer applicable. Typical extinction distances are of the order of 10 nm. It is a matter
of simple geometry to show that the principal and subsidiary maxima can be intersected by the
Ewald sphere, giving rise to scattering corresponding to a given Bragg peak in the diffraction
pattern.
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