Lecture 7 — Introduction to lattice modes
and their symmetry.

1 Introduction

Up to this point, the focus of our course has been on undelistgrihe static properties of
crystals. In doing this, we have heavily exploited 8yenmetryof the crystals — in particular
the translational symmetry, which is responsible for the characteristicuezd of crystalline
diffraction patterns. Some dynamic features have beemacmmated in this picture through the
introduction of Debye-Waller factors. At this point, hovegywe have to abandon this “comfort
zone”, and deal with properties that distinctigeakthe symmetry. For example, a sound wave
or, for metals, a conduction electron, may propagate in th&tal in a certain direction, and this
“picks out” this direction over all the other, symmetry-@glent directions. We may surmise
(correctly) that the propagation along symmetry-equivedi#rections would obey the same laws,
but the fact remains that the propagation breaks the symnsaice the electron or sound waves
do not propagate along all the symmetry-equivalent dioestat the same timePerhaps more
significantly, thewavevectorof the propagating wave is, in generaht in register with the
crystal lattice, so evertranslational invariance is lost Another important class of problems
involves phase transitions where the crystal symmetry is reduced by atomic displacésne
(structural phase transitions), ordering of magnetic momentm@gnetic phase transition$
etc. In this case also we have to be prepared to relinquigkaat part of the symmetry that we
enjoyed in the high-symmetry phase. Rather than “jettisginall the symmetry machinery we
have so far employed, it would seem natural to attempt alsyegtep,systematic lowering of
the symmetry, so as not to give up more than is needed. For example, ondesidga (that
often works) is be to considgroup-subgroup relations. In structural phase transitions, for
example, the symmetry of the low-symmetry phase is ofterbgrawp of the high symmetry —
an observation that can significantly help in solving theatted structure. Even this approach,
however, is clearly inadequate in the general case: whaslational symmetry is lost, in general
very little remains.

1.1 Symmetry approach to crystal dynamics: the general idea

Let’s consider in general the solutian, either stationary or propagating, of a Hamiltonian or
secular equation in a molecule or a crystal with a symmetoyg{g}, €.g., a normal mode of
vibration of the molecule, a phonon mode, an electronic Waation etc. When considering
the symmetry of this solution (intended as a “pattern” of sdamd in real space) there are three
possibilities:



1. The solutiony, is completely invariant by all the elements of the symmetry gro{ip},
i.e.,g[t1] =1 Vg € {g}.

2. The solution isiot invariant for some elements of the group, but the transfdrazution
is proportional to the original one, i.eg[y1] = ¢ for certain elements of the group.
Because we are dealing with rotational symmetry, we caniserthatic| = 1, i.e.,c = +1
if it is real. Complexvaluesc = ¢'* are of course allowed for complex solutions (e.g.,
wavefunctions.

3. For certain elements of the group, the solutionasinvariant and isnot proportional to
the original solution, i.e g[i1] = 1y # ci).

In all these casesdt is completely intuitive that the transformed solutiare also solutions of

the same equations with the same properties of the origmal-e this is obvious in the first
two cases but not in the third. Moreover, if the equationsliaesar (e.g., harmonic oscillator,
Schrodinger equation) angh # ci, thenaiy, + by, for generica andb will also be a solution

with the same frequency or eigenvalug other wordssymmetry generates a subspace of
degenerate modes or eigenvectardn the cases (1) and (2) here above, the eigenvectors are
non-degenerate

The key point here is that th&tructure of these subspaces (i.e., their dimensionality, which
determines how many singlets, doublets, triplets etcetheg)does not depend on the particular
form of the potentialbut only by itssymmetry.

The multiplet structure of a Hamiltonian is entirely determined by symmetry. Functions
that uniquely transform with a certain symmetry are degenerate eigenfunctions of the
Hamiltonian. In general, symmetry does notdetermine the energy of the levels.

1.2 Inversion and parity

Inversion is in a sense a special symmetry operation: it cotesnwith all other rotations and
forms a group of two elements with the identity. For this oees it is possible to show that in
centrosymmetric crystals(i.e., those possessing the inversion as a symmetry el¢miesb-
lutions of the Schroedinger and normal-mode equations hava definite parity — in other
words, transform either into themselves (even-parity @régle” solutions) or intminusthem-
selves (odd-parity or “gerade” solutions) by inversion. vs shall see, this is important in
determining the Infrared and Raman selection rules.



1.3 Symmetry analysis

Given a certain “space of solutions” (e.g., the Hilbert gpac a space of modes), how do we
decompose it into the “multiplet spaces™ As we have seencamego a long way by just
considering the symmetry, without any knowledge of the @caguations. To deal with this
problem, mathematicians and physicists have, over thesyeawveloped very powerful tools,
all derived from the so-callettheory of the irreducible representations of symmetry groyps.
Unfortunately, time does not allow us to describe in anyitltta mathematical aspects of this
theory, nor to learn the powerful “constructive” theoremguired to solve meaningful problems.
In the following sections, | aim to give a “flavour” of these theds, and to illustrate how their
systematic use can simplify enormously the solution of &taof problems in condensed-matter
physics.

Our initial aim will be to find the normal mode of vibration of a 5-atom molecule — 3
problem that normally involves diagonalisation of a10 x 10 matrix. As we shall see, with
the help of symmetry we can do it with pen and paper. Later, we Wl extend the same
concepts tolattice modes (phonons).

2 Lattice fields and lattice “modes”

2.1 General definitions

What do the following concepts have in common?

1. Atomic displacements — static, as for a structural phaaesition or dynamic, as for
lattice vibrations.

2. Configurations of magnetic moments — static, as for maggidt-ordered phases or dy-
namic, as for “spin waves”.

3. Electron density fluctuations from the “average” density

4. Electronic wave-functions, for example, the solutiohthe Schrodinger equation for the
whole crystal.

The answer is: they (and many more quantities that are natiomeal here) are all represented by
lattice fields, i.e., by quantities that have values eithespécific pointsn the crystal (typically
the location of ions, as for 1 and 2), oradt pointswithin the crystal, as for 3 and 4. Beside this
obvious difference (discrete vs continuous field), anotmgortant difference is represented by
thenature of the objectsthat are defined at each point:
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Atomic displacements arepolar vectorsi.e., parity-odd vectors. When each vector is consid-
ered in isolation, it changes sign upon inversion (parig.it happens, atomic displace-
ments ardime-reversal even i.e., they are insensitive to the arrow of time (velocities
would betime-reversal odd).

Magnetic moments areaxial vectorsi.e., parity-even vectors.When each vector is considered
inisolation, it is unaffected by inversion. Parity-evemaarity-odd vectors have the same
behaviour upon proper rotations. Magnetic momentstiane-reversal odd, since they
represent circulating currents.

Electron density fluctuations arereal scalar quantities Fluctuations from the average density
can be positive and negative, whereas the density itsetfsgipe-definite.

Electronic wave-functions arecomplex scalar quantities Note that electronic wave-functions
are not required to have the full symmetry of the crystal ljptality densities do).

Importantly, all the aforementioned quantities can be ¢idwf asforming a linear space In
fact, they can all be added, subtracted and multiplied biascmantities, whilst still yielding
“valid” quantities (the dot product is not necessarily definthough). In this sense, we could
call them “vectors”, but, to avoid confusion with the prewsoclassification, we will use the
general terntattice modes We will call the linear space spanned by these madede space

Thedimensionality of mode space is clearly dependent on the specific field anchether we
are considering a finite lattice (or even a molecule) or amitafilattice. Scalar modes defined
on a N-node lattice have N degrees of freedom, which meanshie are N linearly indepen-
dent modes, whereas vector modes have 3N degrees of fre€dlemeric continuous modes, in
general, span infinite dimensions.

There are clearly many different ways to select the basis véars in mode space. The goal
of the following paragraphs is to lean that some basis vectsrare very special, and can
simplify enormously the solution of a variety of problems irvolving modes.

2.2 Symmetry operations on lattice modes

Each lattice mode could be thought as defining a “pattern’hendrystal lattice, very much
akin to the ones we have already encountered. Clearly, aiganede will not obey the full
symmetry of the crystal; consequently, if we apply what waevpusly a symmetry operator to
a mode, in the form of an “active” transformation, we will iergeral get aifferent mode; we
can, again, surmise that the new mode will largely behavieeasltl one because it is related to it
by symmetry. It is easy to convince ourselves that thesasfibamationgreserve the linearity

of mode spaceso that, ifg is an operatonn; andm, are modes angdandb are scalar constants
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glam; + bmy] = agm; + bgm, (1)

Thereforethe symmetry operators of the crystal are linear operators n mode space Once
a suitable basisis introduced in mode spad¢ke symmetry operators can berepresentedy
matrices. We will not explore this further, but refer to appendix | ¢g8en 8.2) for a short
introduction to matrix representations. A modern pregentaof the theory of “irreducible rep-
resentations” is givenin [1].

2.3 An example of normal mode decomposition

Rather than describing in details the theory of irreducieleresentation, with all its theorems,
lemmas and corollaries, we will here see a practical exammpilee form of a very simple set
of displacement modes of for a hypothetical molecule viithsymmetry.Our ultimate goal is

to find the normal modes of vibration of the molecule but we will build up to this result by
first considering thgossible displacement®f the atoms in the molecule. To further simplify
the problem, we will consider only planar modes, so that ymersetry group to consider is the
familiar 4mm 2-dimensional point group. Our molecule will have four asoat the corners and
one, of a different species, in the centre. We can start bytaogithe degrees of freedoms —
two per atomsi{ andy displacements), for a total of 10 degrees of freedom. Wedcoahsider
each of these degrees of freedom as@le— for instance, the displacement of atom 1 along
the x axis (mode {1z]") could be one of the modes (fig. 1 top left for the labellind). this
case, however, symmetry operations would mix all the mddesnstance, the™ operator §0°
counterclockwise rotation) would transform the mdde| into a new mode whereby atom 2
would be displaced in the positiyedirection, mode 2y]” etc.

2.3.1 The “1D” modes ofdimm

As an alternative to the simple modes like:] and [2y], let us consider the modes in fig. 1.
For these modes, we use the labelling I's, etc., which is widely used by physicists. It is
very easy to understand that all these modes are eiyfmemetricor antisymmetrigi.e, the mode
is transformed intaninus itsel) underall symmetry operators of thémm point group. in
particular (we remind that,o is the mirror plane parallel to theaxis etc.:

e Model'; is symmetriaunderall the symmetry operators of the group — we say that it trans-
forms under theotally symmetric mode

e ModeTl'; is symmetriaunderl, 2, m;q andmg; andantisymmetricinderd™, 4=, my; andmj.



e ModeTl'; is symmetriaunderl, 2, m;; andm;; andantisymmetricinderd™, 4=, m;q andmy; .

e ModeTl', is symmetriaunderl, 2, 4+ and4~ andantisymmetriaindermq, mo:, mq; andm,j.

In general, we would say that “something that transforms Iik to mean that it has the same
transformation rules.

Figure 1: The four “1 dimensional modes” of the square mdkclihese modes transform into
either themselves (symmetric) or minus themselves (antisgtric) upon all symmetries of the
molecule.

Therefore, with this choice of modes the symmetry operatufifg)) are “represented” bgum-
bers For the totally symmetric mode, every operatodinm is mapped to the numbér For
the others, operators are mapped anto —1, depending on whether the mode is symmetric or
antisymmetric, respectively. For example (we enclose tbden in square brackets for clarity):

42 = —1[r2
2[13] = +1[T3)
mi [[4] = —1[T4] )

etcetera. With these modes, we have exhausted 4 of the 8edegfrreedom of associated with
the “corner” atoms. What about the other four?



2.3.2 The remaining four modes

Let us now consider the modes depicted in fig. 2. Here, thatsiw is clearly different. By
applying one by one the symmetry operators (e.g, grapgjoak can verify that:

Certain symmetry operatonsterchange the modesFor example, the operatdr transforms
mode][/] into mode[/ ] and[/II] into model V], etc.

There is no way of decomposing these modes into "simpler’ esdtiat transform as the
previous group, i.e., as a multiplication byl or —1. This is not immediately obvious
but can be shown with a bit of work.

e [/] is nevertransformed intd//I] (or vice versa) and//I] is nevertransformed intg/V]
(or vice versa). In other word#he subspace of mode space spanned b} and [I 1] is
closedwith respect to the symmetry operators(and likewise fo{7117] and[IV].

The pairgI|-[I11] and[I]I]-[IV] transform in the same way. This becomes clear if we write
the transformations in matrix form.

A
r, |
i
] Rl I l [l
o —
A 1
l
- I's
- L[] v
| i

Figure 2: The four “2 dimensional modes” of the square mdkclihese modes transform into
either+ themselves (symmetric/antisymmetric)ioto each other in pairsipon all symmetries
of the molecule. Note that all these modesamnésymmetricipon 2-fold rotation.



2.3.3 Another example: the central atom

As a second example, we analyse the displacements of thealcatam of our hypothetical
molecule, located on the fourfold axis. This atom has twaekegof freedom, as shown in fig 3.
It is a simple exercise, left to the students, to verify thattivo corresponding modésnsform
asl’s.

Figure 3: The two central-atom modes of the square mole@ue.can verify that they transform
as the "2-D” corner modes, i.e., with the representation

3 Normal-mode analysis of molecular vibrations

In this section, we should (hopefully) see the point of all ta hard work we put in decom-
posing the displacement modes into these special, symmes&d modes. In short, all the
normal modes of vibration can be constructed by combining mdes that transform in the
same way. This enormously simplifies the problem of diagonasing the normal-mode ma-
trix (see below), and will be come shortly even more significd, as we deal with dynamica
matrices of infinite dimension (lattice modes.)

3.1 Normal-mode matrix

‘You should already be familiar with the material in this paragraph — if so, just skip it.

We start with the expression for the kinetic and potentiakgies in the limit of “small” displace-
ments from the equilibrium position. In a somewhat shoriehaotation, they are, respectively
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Here, ther;’s are the displacement coordinates of iandm; are their mass. The sum runs over
bothionsandcomponents. The analysis proceeds in the following steps:

1. We perform a transformation to theduced coordinates
§i = Tin/my (4)
This has the effect of eliminating the masses from the kiretiergy expression:
Ex = 3¢
2 &

1 1 o*V
& = 2y ( e axiaxj)fi@ ©)

Z?J

2. We write the equation of motion as:

. 1 v
i+ Y (S ) 6 - ©)

J

3. We seek solution of the form

§i=q et (7)

from which we derive the secular equation

Wl = Z L ad ; (8)
4= S 9,0 4

J

Eq. 8 is solved in the usual manner by diagonalising the matrithe right-hand side.



3.2 Solution of the dynamical problem for our hypothetical nolecule

The corner atoms are linked to their neighbours by a spritilg @onstant<’; and to the central
atom with a spring with constarit; (fig. 4). In considering the vibration modes of a molecule,
we can exclude the ones that give rise to translations (2j@atons (1) of thevholemolecule,

so we are left with 7 degrees of freedom in total. The normatienequation, nevertheless, will
entail the diagonalisation of # x 10 matrix, whilst we expect that three of the resulting modes
will have zero frequency.

Figure 4: The masses and spring constants used to solveritaeniyal problem of our molecule.

We can, however, dramatically simplify the problem by exjolg symmetry. Let us consider a
normal mod&); so that

Qi = Z Q5 q; 9)

and let us assume thé}; is non-degenerate so that it uniquely satisfies the secular equation
with a frequency;. We can simply use physical intuition to conclude thithe modes related

by symmetry to @;, such as ¢ [Q;]) must also be eigenvectors with the same frequency
However, we just assumed th@t is non-degenerate so it must necessarily follow that

91Qi] = cQ; (10)

wherec is aconstant (in fact, aunitary constanthere,+1). We reach therefore the following
surprising conclusion:
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The non-degenerate modes of our molecule must transform ase of the four modesI';—
I'y. Since there are no other modes with these transormation pgerties, I'y—I"y, must be
normal modes!

In particular, we know that for these modes we should notkevdisplacements of the central
atom, because

Modes can only “mix” with other modes of the same symmetry.

3.2.1 Frequencies of thé;—I"y modes

We can immediately find out their frequency by equating thiepibal and kinetic energy terms
(conservation of energy). For example, if madehas amplitude), the “stretch” of eachi;
spring isv/26, whereas that of each, spring isd. Equating potential and kinetic energy per ion
(we omit a factor of 4 in each) we get:

1

NN

whence (and likewise for the other modes):

<2K1+K2)1/2
W, =
my
<K2)1/2
Wy = —
my
(2[(1)1/2
w3 = e
my
wsy = 0 (12)

3.2.2 Frequencies of the other modes

We can repeat the same argument we made regarding non-daigszigenvectors twegenerate
eigenvectors and reach a very similar conclusion:

The degenerate eigenvectors with degeneraciytransform in such a way as to span a sub
space of dimensioni (unless the degeneracy is accidental). This follows from #fact that
g|Q;] is an eigenvector with the same frequency, and must be eithehe same mode or a
degenerate mode.

In our problem, we have 6 modes with the safigransformation properties, transforming in
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pair into each other. How do we combine them to get degenamtaal modes? In principle,
they can all mix, since they have identical transformatiovpprties. Therefore, it would seem
that the complexity of the problem has only been slightlyuetl. However, we can get much
closer to the solution by considering that:

e If K, = 0, thel's modes listed above are the normal modes of the problem. Licpiar,
modeg//] and[/I] and the central atom modes have zero frequency.

e If Ky # 0, the new normal modes can only be admixturesaifinear modes (e.g.}/], [/ 1]
and thez-displacement of the central atom). We could assume thisgsigal intuition,
but formally this comes about because the part of the dyrelmatrix containingi; is
diagonal, and cannot mix components.

e Even if K, # 0, two of the normal modes remain at zero frequency: they spoed to rigid
displacements of the whole molecule in thandy direction.

Therefore, the problem reduces to finding the eigenvectoaszero-determinarg x 3 matrix -
a quadratic equation that has a simple analytic solutiom Aggendix II).

Figure 5: Examples of non-zero-frequency normal modes;adymmetry involving two-atom
displacements. The exact mixing coefficient depend on thesm@mad spring constant parameters.
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4 Extended lattices: phonons and the Bloch theorem

Up to this point, we have only considered an isolated mogwauth point-group symmetry. How
will the concepts that we learned apply to space groups, lwlais we have seen, have infinite
dimension? The answer is that all of the symmetry machinerpasticularly representation
analysis — still applies. The demonstration is much beydwmdscope of this course (a good
reference, again, is [1]). We will instead proceed as fodowe will prove a very simple but
far-reaching result, known as tlBdoch theorem

The Bloch theorem The lattice modesfully symmetrisedwith respect to the translation
group are constructed by defining an arbitrary mode [«(0)] in the first unit cell and re-
peating in all the other unit cells with origin R; the same patterrmultiplied by a phase

factor, as ‘
[u(R;)] = [u(0)]e™ ™ (13)

The vector k is known as thepropagation vectoof the mode, and can be restricted to thg
first Brillouin zone. This is clear from the fact that an arbitrary propagation vector k can
be written as

U

k=1+k (14)

Where 7 is a RL vector. However,T can always be omitted sinceR; - = = 2mn
The proof of the Bloch theorem is very simple: one shows thatfione applies the lattice
translation ¢ (with translation vector t) to the mode in eq. 13, one obtains

tu(Ry)] = e [u(Ry)] (15)

This is shown graphically in fig. 6. Because this mode transfas upon translation by
multiplication with a constant, it must be fully symmetrised

It is necessary to emphasise that the arbitrary Bloch mod@gsst described are in general fully
symmetrisedvith respect to the translation grouput not fully symmetrisedwith respect to the
other symmetry elements of the space grdlignsiderably more effort is required to achieve full
symmetrisation.

All eigenfunctions of a Hamiltonian with a translational periodicity are Bloch waves or
linear combinations of Bloch waves with symmetry-related popagation vectors.

4.1 A simple case: symmorphic groups

A considerable simplification of the problem occurs whengpace group isymmorphic, i.e.,

as we will remember, it contains a point with site symmetryiegjlent to the crystal class. We
must also require that the propagation vedtarbeys the same symmetry. In this case, we can
apply the following recipe:
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Figure 6: A simple example of a vector Bloch mode to illustridite transformation properties of
these modes upon translation. The arrows represeranipditudeof the mode (here a constant
vector), while the clocks represent tpbases Mode (b) and (c) are the same as mode (a)

translated by one or two unit cells to thight. However, they can also by obtaineultiplying
mode (a) byexp(ikR) whereR is one or two lattice spacings for (b) and (c), respectivahy &
is thepropagation or Bloch vector of the mode.

1. Consider all the atom in the unit cell centred around tja+siymmetry point as a “molecule”
and construct the appropriate point-group modes.

2. Propagate the modes using the Bloch construction (eq. 13)

We can see the implications of this by examining once agamtbdes of our square molecule,
and trying to imagine how they will propagate in an extendstide, for example, with space-
group symmetry P4mm. To comply with our requirements, tlopagation vector must be along
thec axis. We can see that:

e The three zero-frequency modes will give riseatmustic modesAll the other modes will be
optical.

¢ If no other spring constants are introduced, the energyeafitbdes will be unchanged. Springs
betweerthe “molecules” in different unit cells, will give rise tdispersioni.e., the energy
will depend onk.
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5 Experimental techniques using light as a probe: “Infra-
Red” and “Raman”

Optical techniques are extremely useful to determine tidmdrequencies in molecules, as well
as phonon frequencies in solids. Here, we will briefly introel two techniques — Infrared (IR)
absorption/reflection and Raman scattering. As we shalltsese techniques have opposite and
complementary selection rules, and must be used in conidiintat measure all frequencies. In-
elastic neutron scattering (see below) does not suffer gelection rules, and is able to measure
all vibration modes at the same time. As the name suggestspéRtroscopy is performed by
measuring thabsorptionor reflectionof infra-red radiation (the latter exploiting the fact that
reflectivity contains information about absorption). Ire ttmore “direct” absorption process, a
photon is completely absorbed anghononis created instead (fig. &. Raman scattering
is a “photon-in-photon-out” technique, where one measthesvavelength change of visible
light as a phonon is created or annihilated (figh)7 Typical values of the incident energy and
wave-vector are:

IR hw ~ 10 — 100 meV

1

— ~10%cm™!

Raman hw~1—-10eV

1
X 10°cm™! (16)

5.1 IR absorption and reflection

We know from the theory of optics that the dielectric constaguires an anomalous component
with both real and imaginary parts near a resonance of therrahtin particular (you will have
seen this in more details in the “Optical Properties of SJlilart of the C3 course. We defer
to this part for the detailed mathematical treatment). Tdllewing results can be obtained by
analysing theClassical Dipole Oscillator Model

e The reflectivityR of a material contains information about both refractiveéeixn and absorp-
tion coefficiento.
e Near a resonance, bothandn becomeanomalous and show geak at the resonant energy.

e The width of the peak is related to the width (sharpness)@fdéisonance (they” coefficient,
which you might have encountered already).
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Figure 7: Diagrammatic representation of the IR and Ramatiesang processes in a crystalline
material, illustrating the energy and momentum conseswatiFor a molecule, the recoil of the
molecule itself ensures conservation of momentum.

An example of an absorption spectrum for a the Vanillin moleés shown in fig 8.
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Figure 8: The IR transmission (1/absorption) spectrum efmnillin molecule. Note the sharp
peaks where the IR light is strongly absorbed by the molestiflmation modes.
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Typical vibration frequencies in molecules andoptical phonon frequencies in solids (see
here below) are of the order of several THz (1000 cm' = 30 THz), which falls in the IR

region of the electromagnetic spectrum. For our purpose, iis important to stress two
things:

e Itis the displacement of oscillating charges that causes épolarisation. In other words,
in order for a resonance to cause a IR anomaly, the vibration bphonon modesmust
generate oscillating electrical dipoles.

e The momentum of the electromagnetic radiation,hv/c, is much smaller than that of
typical phonons, except for phonons very near the zone cerdgr On the other hand,
the frequency of near-zone-centreacousticphonons is much too low to be accessed
with this method. Therefore, in extended solids, IR spectrscopyessentially probe
zone-centre optical phonons.

[72)

With this introduction, we can look back at the vibration reedf our molecule, and ask our-
selves which ones will be visible by IR. The answer, oncerggaiobtained from symmetry
considerations:

Since a dipole moment is parity-odd (i.e., it change sign upoinversion) only parity-odd
modes (i.e., modes that are antisymmetric by inversion) cabe “IR active”. The same
selection rules apply tocentrosymmetric crystalgvhere phonons can also be classified as
parity-even and parity-odd.

Since we only considered 2-dimensional modes, we can fgidntiersion and 2-fold rotation
and look at the symmetry-antisymmetry properties of ounredrmodes. Referring to section
2.3.1 and tofig. 1 and 5, we can easily see that mbgeB, aresymmetriaipon 2-fold rotation,
whereas all thé&'s; modes arantisymmetric It follows that only the modes in 5 (degenerate in
pairs) will be IR-active — all the rest at®-silent The IR spectrum of this molecule (excluding
“overtones”= higher harmonics) will only contain 2 peaks.

5.2 Raman scattering

The second important optical spectroscopy techniqumeigsstic light scattering. In extended
solids, this technique can be used to measure dotlisticandoptical phonons. Inelastic light
scattering via acoustic phonons is knownBxsllouin scattering — a technique that is per-
haps more often applied to liquids. Inelastic light scatgeria molecular vibrations or optical
phonons is known aBaman scatteringln both cases, the previous consideration apply and the
phonon probed optically are those very near the zone centre.

In the case, of Brillouin scattering however, acoustic mhacan be probed because their fre-
guency is equal to the frequencllangew; — w,, which can be a small fraction af;. Note that
the shift can be positive (phonaneation or negative(phonoannihilation), so, in general, two
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peaks are observed (fir 9.
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Figure 9: Phonon creation (“Stokes” process) and phonoihdation (“antiStokes” process) in
Brillouin scattering. in Raman scattering, only the “Stekprocess is usually observed at room
temperature, because the optical phonon modes have lovigions.

The mechanism giving rise to Raman scattering involvekange in the polarisability of the
molecule or crystal as it vibrates, which generates altefmaelection rules to the IR process.
Again, this can be seen classically as follows: the poladesavector inside the material at a
given positionr and timet can be written as:

P(t,r) = aEekor—=ot) L ¢
a = ap+ Z @Q; ekt L 4 e (17)

In eq. 17k, andw, are the wavevector and frequency of the electric field lanahdw; are the
values for normal mode having amplitude);. The quantitiesx, anda; are components of
the polarisability tensor, since, in generalP is not parallel toE. Importantly, all thea’s are
properties of the crystal, and must have the full symmetry othe crystal.

By combining the two expression in eq. 17 we obtain

P(t,r) = agEe'kor—wot) | Z @, Q, E ¢koFkir—(wotw))] 4 ¢ ¢ (18)

7

We can see from eq. 18 that the polarisation vibrates with thee distinct frequencies: that
of the original photon and those shifted upwards or downward by the phonon frequency.
A full guantum-mechanical analysis is required in order to dbtain the relative height of
the “Stokes” and “antiStokes” peaks (see, again, fig. 9.
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Here, we are principally interested in the symmetry sedectules. Let us have another look
at eq. 18 in the case of@ntrosymmetric molecule or crystal Once again, we remind that
thea’s must have the full symmetry of the molecule or crystal — in paticular, they must

be parity-even for a centrosymmetric system Both P and E are parity-odd, sthe phonon

or vibration must be parity-even (This is strictly true only if one ignores the small amount of
momentum carried by the photon). In the case of our molechig,condition is satisfied by
modesl';-I'y, which are thereforRaman active

6 Inelastic neutron scattering

Inelastic neutron scattering (INS) is another powerfuhteéque to measure molecular and lattice
vibrations. In this case, the probe is a thermal neutron,car@measures the change in energy
and momentum of the scattered neutron. This process igrdtes in diagrammatic form in fig.
10 for a crystal. For a molecule, as in the case or IR and Ramaftesing, conservation of
momentum is ensured by the recoil motion of the moleculéfitse

Ve, "

0/7 .
|NS ¥ Phonon
ho,, fik,
—

“e\)‘( k= hkl-hkz

Figure 10: Diagrammatic representation of the inelastiatmo@ scattering process (INS) in a
crystalline material, illustrating the energy and momemtonservation. For a molecule, the
recoil of the molecule itself ensures conservation of maonan

Typical neutron parameters employed for INS are

INS hw ~ 10 — 400 meV
1

T 10" —10%cm™!

(19)

As we can see, the neutron and IR energies are comparabléheoneutron wavenumber
(momentum) is much larger, enabling one to access several Brillouin zones
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The main advantages of INS over IR and Raman are in fact

e The range and momentum is much extended.

e There are no selection rules, so all phonon modes can besaccasthe same time.

The most popular neutron instrument used to measure phomangstal is known as &iple-
axis spectrometer(fig. 11). By varying the monochromator, sample, analysedl @etector
angle one can explore a vast say of the energy-momentum.space

Monochromator

Source
Analyser

~

Detector

Figure 11: Schematic drawing of a “triple-axis” spectroemnet
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8 Appendix |: Representations and matrices

8.1 Matrix representation of generic modes

Let us imagine that we want to describe a generic displacepatern as dinear superposition
of the generic modes in which only one atom is displaced, as

a[lz] + b[ly] + c[2x] + d[2z] + ... — (20)

R0 o R

Since, as we just said, symmetry operations mix all the madtegnatrix representatiornof a
generic symmetry operator will contain non-zero off-diagmal elements.

For example, the matrix representation of the oper#itaon this basis will be:

S OO OO o o

4+ —

(21)

SO OO o oo
|
O OO OO OO
_ o O O o o oo
|
SO R OO oo oo

[l el e Nl o)
[lielNelNoNell S N
[ elNelNoNeBoll e

The “special modes” we are seeking are the ones in which thepeesentative matrices are
“as diagonal as possible”.

8.2 Representations

The matrices associated with a given group also form a grehere the composition is replaced
by matrix multiplication . If M(g) is the matrix associated wit} it is rather straightforward to
prove the following:

M(go f) = M(g)M(f)
M(g™") = M™'(g)
1

M(E) = (22)



whereT is the identity matrix. A mapping (not necessarily bijeediwf a group{g} into a set

of matrices{M} obeying the identities in eq. 22 is known asepresentation of the group (a
bijective mapping is known asfaithful representation). Note that from eq. 22 follows that all
matrices have non-zero determinant.

8.2.1 The “2D” modes in matrix form

Let us consider the set of displacements thatiaear combinations of modes|/] and[I1] —
in other words, all the displacements of the type

all] + b[I1] — ( ‘g ) (23)

where thearray notation in eq. 24 should be obvious. An alternative phrasing is that w
are considering theubspacespanned by mod€gg] and[//]. The transformations can now be
expressed imatrix form , as illustrated in tab. 1.

Table 1: Matrix representation of the transformations oinpgroup 4mm on the subspace
spanned by modédg] and (/]

1 2 4+ 4=
10 -1 0 0 —1 0 1
0 1 0 —1 1 0 -1 0
mio mo1 mi1 ma1

1 0 -1 0 01 0 —1
0 —1 0 1 1 0 —1 0
By repeating the same operation on the subspace spanneddaghbl/| and[/V] as

C[ITT) + d[IV] — < y ) (24)

we discover thathe matrix expressions of the symmetry operators in this sugpace are
exactly the same As stated before, the paif$|-[//] and[I]]-[IV] transform in the same
way. We calll'; this matrix representation of the group (in the two subsgpace
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8.2.2 The full matrix representation

We are now in the position of replacing the "off-diagonal”tnizes like the one in eq. 21 with
“almost diagonal” matrices. We say “almost” because thetfeatI'; cannot be further “reduced”
means that some of its matrices will always contain off-dizg) elements. Let us re-write the
matric representation aft (as for eq. 21) in terms of the new basis vectorsl'y and[I]—{IV]
— the latter related td';, so that

a
b
a[l'y] + b[Ca] + ¢[Ts] + d[Ty] + e[I] + f[II| + g[III]+ h[IV] — | ¢ (25)
d
With this basis, the matrix representationdofwill be.
10 000 OO0 O
0O -1 000 00 O
0 0 -100 00 O
0O 0 010 00 O
+
=10 0 0o00-10 o (26)
0o 0 001 00 O
0O 0 000 00 -1
0o 0 000 01 0

When we express itin term of the new, “symmetrised” modes, th matrix representation of
all the operators isblock-diagonal and it has the same shape for all the operators. We can
also note that the two blocks on the bottom-right corner are he same for all the operator,
indicating that the transformation of the associated basivectors is the same.

8.2.3 lrreducible representations

All the concepts in this section are important and should be @membered. We can see
that the statements are true for the specific example. Genelproofs are presented in [?],
chapters 1-3.

e The matrix representations of the group into theividual subspacesspanned by the sym-
metrised modes are callégleducible Representations(irrepsin the remainder)

e Theirreps are a unique property of thgroup, not of the specific system of modes under
investigation. For example, point grodpvm has always Srreps.
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It is always possible to choosmitary matrices (real or complex) for a given representation.
In the case we showed, the matrices are all real and orthbgona

Their matrix representation is also unique, except fangary transformation of the matri-
ces. This is equivalent to a change in the basis vectorsmaifich subspace.

1-dimensional representationsi.e., with matrices that reduce to a single number (likel 4
above) arainiquely defined

For multi-dimensional representations, th@ce of the matrices (known as theharacter) is
also uniquely defined, as it is left invariant by unitary sBormations.

The representation of any system of lattice modes camlzpiely decomposed inrreps. For
example, in our case, we would use the shorthand notation:

Ffull = Fl + FQ + F3 + F4 -+ 2F5 (27)

wherel';,; is the full matrix representation of thienm group upon the system of modes.
Note thatl'5 appears twice. As we will see shortly, not ateps have to be present.

A series of powerful theorems (which, unfortunately, we dbmave the time to study) enables
one to perform the decomposition iriteeps and to construct the relevant basis vector.

8.2.4 Representation decomposition for the central atom

Based on what we showed in the text, it is easy to understaxdte full representation of the
central atom displacements contains oy so

Ipun = 255 (28)

9 Appendix Il: Frequencies of the compound modes

As explained in the text, we are working in the subspace oflBnear modes, say modé],
[I11] and the central atom displacement alangUsing this basis set, the reduced dynamical
matrix can be written as:
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2 0 0 [ 1/2 1/2 0 0 0 —1/2
K K. K.
—Lloo0oo0| + =2]1/2 12 0| 4+—=2 0 0 —1/2
1000 ™o 000 a9 92 0
[0 0 0
K.
+ 21000 (29)
10 0 2

This matrix has zero determinant for every value of the patans. The eigenvalue equation is
therefore quadratic, and can be solved analytically.
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