Lecture 8 — Anharmonic effects in
crystals.

1 Introduction

Most of the effects related to lattice dynamics that you hewedar encountered in this course
and in previous courses — lattice specific heat, Debye-Whlt#ors, thermal diffuse scattering
etc., could be very well interpreted in terms of the harmaimnéory of the crystal lattice. Indeed,
deviation from the harmonic expression for the Debye-WdHetors (V' « ¢?) are only really
significant at high temperatures, and so is the anharmomrecton to the expression for the
phonon specific heat. In this lecture, we will focus our attenon two effects that can be
observed at all temperatures, and that can only be explaiiteoh the dynamical theory of the
crystal lattice by invoking anharmonic terms in the latirergy.

Anharmonic terms lead to a lattice potential energy of thienfo

=1
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where the term with = 2 is the familiar harmonic term. It is customary to retain terap to
n = 4, mainly because the cubic term is unbound from below. In ntasgs, however, stopping
the series at = 3 in the small-displacements limit still yields sensibleuiés.

It may come as a surprise to learn that the ubiquitous phenomefthermal expansioncannot

be explained within the harmonic theory of the crystal ¢&tti The reason, as we shall see, is
that thepressure of a gas of harmonic phonons is temperature-independent, since the phonon
frequency does not depend on the amplitude of the osciistidHowever, by introducing an
anharmonic term, the phonon gas acquires a finite temperdgpendent pressure, which is
ultimately responsible for the thermal expansion of thestaly

Another physical effect that requires phonon anharmognasta key ingredient ihermal con-
ductivity . In a perfect crystal of an insulatolsgrmonic phonons would never be scatteredso
such a crystal would have infinite thermal conductivity aterhperatures. Scattering of phonons
from lattice imperfections would produce a finite thermahdoctivity, but with a completely
wrong temperature dependence. The only way to explain ttzeisléo admit thaphonons can

be scattered by other phononsand this can only occur by abandoning the harmonic approxi-
mation.

As we shall see, only certain phonon-phonon scatteringgsses, known asmklapp processes



can affect the thermal conductivity. This stems from the thatreal momentum and crystal
momentum are separately conserved quantitiesFor the phonon gas in an insulator (or by
the phonon and electron gasses in a metal), crystal momastoomserved to withirk times a
RL vector. Howeverthe phonon gas can exchange total momentum with the centef-mass
momentum of the crystal (and with particles, such as neutrons, that are scatteraddrout of
the crystal). Umklapp processesfor which the total momentum of the interacting phonons is
not conserved, are the only ones capable to affect the ctindwaf heat.

As an introduction to the subject of anharmonicity, we waView the important issue of real
momentum and crystal momentum conservation. Our treatmidriollow that of Ashcroft and
Mermin, Appendix M [1], but we will use some of the results ammtation from the previous
lectures. Thermal expansion and thermal conductivity stiiators are also discussed in details
in Ashcroft and Mermin, Chapter 25 [1].

2 Real momentum and crystal momentum conservation

2.1 Symmetry considerations

In the previous lectures, we have seen that all the translatperators act on normal modes as:

t[u(Ry)] = e [u(R;)] (2)

wheret is a symmetry translation and th&€ R;) will, in general, be complex modes. Eq. 2
will in general be true also fowavefunctions as they also represent a linear space, provided
that the system as a whole has translational symmetry. Wéheaefore introduce the quantum
mechanical operatdig (R being a real lattice vector), and we can always find a complettef
wavefunctions so that

Try) = e Fy (3)

The capitalK in eq. 3 is deliberate, as we shall see shortly. Note’thas not Hermitian (it has
complex eigenvalues).

The next step is to look at the symmetry of the Hamiltonian. eWlwve say that “the system
possesses translational symmetry” we may mean two thirgg:the Hamiltonian containing
coordinates shifted by? is the same operator as the original Hamiltonian or that;ifs an

eigenstate off, Tr; is also an eigenstate with the same eigenvalue. We can cawurselves



that in fact these two statements are identical, providatitie define the “shifted” Hamiltonian
as:

H(r+R)=TgHTg' = TrRHT r (4)

The translational symmetry condition is thus expressel thié statement thdf commutes with
TR for all symmetry translations:

ToH(r)T g = H(r) (5)

SinceH commutes witli g, we can always find a set of common eigenvectors for both tpsra
so that

Trip; = KRy, (6)

holds with); being eigenvectors of the Hamiltonian.

It is obvious that ify); is a single-particle Block statds is the same thing as Bloch wavevector
k we have previously introduced. It is also quite clear that; iflescribes a set of Bloch-state
non-interacting bosons or fermions

K =) k (7)

where thek; are the individual Bloch wavevectors of each particle. Wetbarefore calh K the
total crystal momentum. This is because we can write explicitly the n-particle waaetion

as asymmetrised or antisymmetrised product of 1-particle wavefunctions. It can be shown that
eq. 7 represents a completely general result, which is es@h in the interacting case (non-
separable wavefunction) and, in particular, in the casbirmonic lattice vibrations, where
the phonon number is not a constant of the motion. In fact,caneprove the general equation:

TRaL jT,R = eik'RaL j (8)

from which one can prove straightforwardly by induction

TRH“L,ﬂO >= ei(Ziki)'RHaLiJ 0> (9)
,J N



We can also write

wherek is thetotal crystal momentum operator (we have use the hat to indicate that it is an
operator), the definition of which should now be obvious wheplied to a generic n-particle
state or linear combination thereof.

2.2 Conservation of the total crystal momentum

2.2.1 Non-interacting particles

As we have just seen, if translational symmetry is presé@etHamiltonian commutes with the
translation operatoffi’@'R for a given set of particles, e.g., electrons and phononss fileans
thate’X R is a constant of the motion— if it has a definite value in the initial state, it must have
the same value subsequently. Also, since this is true fdatite translation®,, it must be true
that:

K, = K;+hr (11)

wherer is aReciprocal Lattice Vector. in other words

Crystal momentum is conserved to withini times a RL vector.

If more than one set of Bloch non-interacting particles esspent, this statement is true for each
set individually, as the operatoksfor each set all commute with the Hamiltonian.

2.2.2 Interacting Bloch particles

If an interaction term between different particles is prese the Hamiltonian, the crystal mo-
menta of each set of particles will not, in general, be coresgrbutthe total crystal momentum
for all particles will be conserved to within i times a RL vector. This is because the interac-
tion term will in have the form:

> w(r; - R, —u(R,)) (12)
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where ther;’s are the coordinates of the particles (e.g., electrordRard- u(R,,) is the position
of the nucleus at the lattice node This term is clearly invariant, for example by:

r, — r;+a

uR,) — uR,y) (13)

We may stop for a second and ponder the significance of eq. 13artieylarly the second line,
which indicates the crystal symmetry translation by ongdatunit. The consequence of this is:

For interacting Bloch particles, the sum of the crystal momata is conserved to within#
times a RL vector.

2.2.3 Interaction with external particles

In absorption, emission and scattering experiments, tvdrde one or more particles which
will, in their initial state, final state or both, travel fawvay from the crystal, so that the interaction
terms with the crystal will be negligible. In these staté® operatoi for these particles will
be nothing other than thetal real momentum. Therefore, we can conclude that

For a system of Bloch particles interacting with themselveand with “external” particles,
the sum of the crystal momenta of the Block particles and the@al momenta of the external
particles is conserved to withini times a RL vector.

2.3 Normal and umklapp processes

As we have seen, the total crystal momentum (plus the realentarof the external particles)
is in general conserved to withintimes aR L vector. One implication is thatve can always
define eachof the crystal momenta within the first Brillouin zone (by contrast, the real mo-
menta have an absolute significace to within an overall fastoounting from the centre-of-mass
velocity). Once we have done this we can define:

Normal processes are the ones for which the crystal momentum consation holds exactly,
i.e., the additional RL vector is zero.

Umklapp processes are the ones for which the crystal momentum cons&tion holds to
within a finite RL vector timesh.




2.4 Conservation of the totalreal momentum and energy

As we anticipated, the totatal momentum of the crystal plus all the external particles i$-co
served, in the absence of external forces. This consenvatises from different invariance, this
time infinitesimal — the invariance by translation of all twordinates by an arbitrary vectar

r, — r;+r
R, — R,+r
uR,) — u(R,+r) (14)

Again, it is important to recognise the difference betwegni¥3 and eq. 14 even when= R

(a real lattice vector). It is not difficult to see that thidfelience amounts ta translation of

the center of mass of the crystal byR. Two important consequences of this are (we skip the
detailed demonstrations):

Normal processes conserve real momentuin an umklapp process, the additive termar
corresponds to real momentum transferred to the center of mas of the crystal.

An interesting implication arises when one considers thesidity of selecting different unit
cells (i.e., different Brillouin zones) in certain cryssistems (triclinic, monoclinic). The possi-
bility arises that a process that is classified as normal exsatting may be umklapp in the other.
This amounts to a different repartition of the total momemtoetween the phonon system and
the center of mass, and is of no physical consequence, astegpe

2.4.1 Energy conservation

As we have seen, in umklapp processs momentum is transferred to the crystal as a whole.
However, because of the large mass of the crystal, nomentum transfer to the whole crystal
implies essentially no energy transferin other words,

Total energy is conserved in both normal and umklapp processs.

3 Thermal expansion

Let us know examine the phenomenon of thermal expansiorslama that it is related in a fun-
damental way to the anharmonicity of the lattice interatpotential. Let us recall the important
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thermodynamic expression for the pressure:

oF
r=-(av), o)

whereF' is the Helmholtz free energy given by

F=U-TS (16)

When applied to a solid, eq. 15 states thateheilibrium state for a solid (e.g., at ambient
pressure) is reached when the external pressure exactly l@ices the volume derivative of
the free energy at a given temperature.

The Helmholtz free energy of an insulator has two contrdnsi

e The equilibrium energy/, of the crystal lattice, i.e., the energy of the “springs”eir equi-
librium positions. By definitionf, = % Is temperature independent:
0By _ PUy _
or — ovor

(17)

e The energy and entropy term for theonon system The volume derivative of this part of the
Helmholtz free energy can be considered to beptiessure of the phonon gas’,,.

The calculation o$’,;, in the general case (including anharmonicity) is not diffibut is rather
lengthy, and is reported in Appendix |. Here, we will assuhreeresult as given and proceed with
the derivation of théinear thermal expansion coefficient

1 [oV 1 (0P/0T),
= — B — _— - ¥ 1
“T 3V <8T)P 3V (0PJOV)), (18)
Eq. 18 is obtained by recognising that P andV are linked by theequation of state
ST, PV)=0 (19)

taking thetotal derivatives with respect to each variable and solving tiselteng determinant
equation.

Using the definition of théulk modulus (inverse compressibility):



B=-V(0P/dV), (20)

eq. 18 becomes:

1 (0P\ 1 (0P,
O‘_33<6T)V_3B<6T)V (21)

where we have used eq. 17.

We now write the phonon gas pressure:

0 Bws (k) 1
Pn =~ + ; (—h o ) pw (22)

% ; hw, (k)

The first term is the volume derivative of the zero-point ggeit is temperature independent
and can be ignored for the calculation of the thermal expaneoefficient. The second term
depends on temperature through the phonon populatign) = (exp(Shw,(k)) — 1)~1, butis
non-zero only if at least some the phonon frequencies depermh volume. Note thatf all the
phonon frequencies are volume-independent, there is an egiacancellation between energy
en entropy terms, so that only the zero-point energy survive

In analogy with case of the single oscillator, we can coneltint:

If the lattice potential is harmonic, the phonon frequencies are volume-independent, and
the thermal expansion coefficient is zero at all temperaturs.

From here onward, we follow closely the treatment by Ashiantl Mermin. In order to describe
the experimental data, it is therefore necessary to go lketfwa harmonic approximation. We
can write

1 (k)Y D
a“= 33%( Bi% )aT (k) (23)

Remembering the expression for the specific heat:

cy = msT(k)a%ns (k) (24)

k,s
it is natural to define theontribution to individual phonon modes to the specific heat
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hosk) 0 (1 (25)

cusk) = == 57

the so-callegbartial Gr Uineisen parameter— related to the anharmonicity of individual phonons:

ke _w:(/k:) &gék) - —a%?lﬁ’”y;)) (26)
and theoverall Grineisen parameter
_ Zk,s Cos () Vks 27)
2 ks Cos(K)
With these definitions, the thermal expansion coefficiemtriten as
(28)

Note thaty is dimensionless, and for typical materials ipositive(springs become stiffer as
the volume is reduced) and is usually of the order of unity, ahough it can be much larger
and sometimesegativein special cases

3.1 Example 1: the Debye model

In most material, thermal expansion at low temperaturegisidated by the anharmonicity of
the acoustic phonons. We can therefore calculate the thexpansion coefficient using the
Debye model.

In the Debye model, all the phonon frequencies scale lipegth the Debye frequency:

k

w(k) = wDW

(29)

wheren is the number of unit cell per unit volume. Therefore
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~ Od(nwp)
0= Ty (30)
and
Cy
Y =12 (31)
CU
where we recall the expression for the Debye specific heat
T \* ren/T xte®
=Onkg | — dr——— 32
CyD In B (@D) /(; l'(ex — 1)2 ( )

3.2 Example 2: the Einstein model

For some materials, the thermal expansion is certain teatyner ranges is dominated by the
anharmonicity of a single optical branch. This may occurrn@®se transitions, where part
of the optical branch goes soft, or in particular geometai@sitting the so-called “rigid unit
modes” — anomalously soft and anharmonic optical phonanthi$, case, one can employ the
Einstein model with:

~ O(lnwg)
YE = —W (33)

and the Einstein specific heat fosiagle branch:

x2e”

CyE — ZC’UE(k) = nkgm (34)
k,s

wherex = Oy /T. Therefore
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CyE

Y =7E (35)

Debye and Einstein models can be combined to give a betteripgigsn of the thermal expansion
in all temperature ranges.

3.3 Thermal expansion in metals

The previous derivation of the thermal expansion coefficoanly strictly applied to insulators,
since it only took into account the pressure of the phononligasnatural to extend this to metals
by including the pressure of the electron gas. It is an eléamgmesult of the Sommerfeld theory
of metals that:

20,

p, = -2

: 3V

OP, 2
_ L 36
(aT)V e (36)

The complete expression of the linear thermal expansiofiicieat is therefore

1 h 2 l
- Zee 7

In assessing the relative importance of the two terms, mgortant to remember that typically
~v =~ 1 and that, in the Debye model:

v

I 24r2 T TP

el 3
c 5 7 (O} (38)

whereZ is the nominal valence of the metal. When evaluated nunibfies. 38 leads to the
conclusion that the pressure of the electron gas contslaigmificantly to the thermal expansion
only below~ 10K. The main difference in the thermal expansion of insulatord metals is
therefore in the low-temperature behaviowotr?™ for insulatorsyx 7" for metals.
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4 Lattice thermal conductivity

In this section, we will consider in some detail the phenoomesf thermal conductivity in insula-
tors. As we shall see, the experimental data can only beiegaéy considering phonon-phonon
scattering, and assuming that umklapp processes alonebttatto the thermal mean free path.
Before discussing the specific subject of phonon thermatiectivity, we will provide a short
introduction to the elementary theory of thermal transpwith an emphasis on the comparison
between different transport phenomena. Although far framdp numerically accurate, these
considerations provide good order-of-magnitude assassna@d a good way to “think about”
these problems. A complete treatment of transport phenarfweith an emphasis on metals) in
the semiclassical approximation is given in Ashcroft andiia [1] chapter 13.

4.1 An elementary guide to thermal transport theory

All transport phenomena (mass transport, charge transgart transport, heat transport) have
in common some important features: they aom-equilibrium, steady state phenomenaand
they are characterised bygaantity that is being transported, say(, and atransport speeduv.
One defines aurrent as;j = (Q/V)v wereV is the volume. For example, for charge transport
the transported quantity is electric charge (30”7 = —en. and the transport speed is the drift
velocityvy = —eET/m*, so thatj, = e?n.7/m* E. The conductivity (in this case, the electrical
conductivity) is the ratio of the current and the “driving-ameter” ¢ in this case). For thermal
transport, the transported quantity is heat (or entropy) the velocity is that of the particles
that transport the entropy. However, as we said right at gggnming, transport is essentially a
non-equilibrium phenomenon: whereas an electron retaichiirge after a collisiom, particle
releases its entropy when it reaches thermal equilibrium tihough collisions(not all collisions
are capable of this, as we shall see).

Heat Source Heat Sink

\

[ [
| | |
< —s € — < —

Figure 1. Schematic representation of thermal transport.
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Let us look at the scheme shown in fig. 1 (for complete rigows,consider 3 domains in a
somewhat pedestrian argument; typical phonon mean frés paRT are a few tens of nm). The
entropy per unit volume at each pointis given by:

T C
_ &
s /O dr (39)

The entropy balance at the mid positidh is given by the entropy flowingn the domain and
released therein minus that flowiogt:

1
ASm = 5(81-}-83)

ASout = 59
1e¢, Cy
Astot = 5? (Tl — Tg) = T[VT (40)

wherer is the mean free path. The transported quantity is the hexatfer per unit volume

% = (VT (41)
while the relevant velocity is the average 1-dimensionakshpin ther direction —v/3. Note
that we have made the approximation that the average vielodd not depend on temperature,
which is about (but not exactly) correct for both phonons @ledtrons (but, of course, would be

very wrong for bosons with a mass). Our discussion is sung@diin tab. 1

Table 1: Various parameters relevant to thermal and etattiiansport.

Transport Transported quantity Velocity Current Conductivity
Electrical —en, —eET/m* | e2n.t/m* E | 0 = e*n.t/m*
Phonon Thermal hNT c/3 s eNVT | kP = 3dlic
Electron Therma T vr/3 scvpVT | k% = 3civp

The mean free path and the relaxation time in eq 1 have in general a complex temperature
dependence, making exact theory of transport a very diffiroblem. However, we can write:

[ =(ny) " (42)
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Wheren, is the density of scatterers ahdis the scattering cross section; this simply shifts the
problem to determining the temperature (or energy) depwelef the cross section.

Note that, in the free electron model

2
et = noky™ (PN Z g sz; (43)
2 \ &r m* v

and/ = vgT, So the electronic thermal conductivity becomes:

2

el NeT T 9
= —k5T 44
ms 3 P (44)
whence the famoud/iedemann-Franz law:.
2 /ﬂ 2
pel =1 (—B) To (45)
3 e

In other words, the ratio between electrical and electrreemal conductivities does not depend
on any materials-specific parameter, and should be the saitien(the employed approxima-
tions) for all materials.

4.2 Thermal conductivity due to phonons

Keeping in mind the result we obtain for the phonon thermabewtivity in tab. 1, it should now
be easy to predict the temperature dependence of the theomduictivity due to phonons (i.e., in
insulating materials) within the framework of the harmomicdel. In a perfect crystal, harmonic
phonons would propagate without hinderance as free pastiélirthermore, in an insulator, we
have removed the possibility for them to scatter off elatstdNe would therefore conclude that
phonons can only be scattereddsystal imperfections, i.e., defects and, ultimately, the surfaces
of the crystal themselves. Note that, in both cases, momentum is transferred between the
phonons and the crystal as a whole These collisions are therefore efficient in thermalising
the phonon energy distribution and therefore in transigrantropy. On this basis, takingas

a constant, we can as a first approximation writex 1/n, with n, being the defect density.
If ng is very small,r is eventually limited by the crystal size. In either cages harmonic
approximation predicts that the phonon thermal conductivity should be proportional to
the phonon specific heatthat is,c 7% at least up to temperatures where the optical phonons
become important. In most materials, the relatiéh oc 7° should therefore hold in a wide
domain up to a significant fraction of the Debye temperature.
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The experimental situation is, however, rather differdiite relations?” o« 7° is indeed obeyed
at very low temperatures (typically to 10K), but the lattice thermal conductivity drops
rather abruptly above this temperature. This is exemplified in fig. 2.

200

- g

THERMAL COMDUCTRITY IN WATTS CM™' DESREE!
=
n

Q
ra

ol

LHlE

i i 1 I L
il z 5 ] #0 o0 [rits]
TEMPERATURE | DEGREES KELVIN

Figure 2: Thermal conductivity of isotopically pure LiF. &ifferent curves at low temperatures
correspond to different crystal sizes: (A) 7.25 mm, (B) 4n@® (C) 2.124 mm and (D) 1.06 mm.
The figure is the same as in Ashcroft and Mermin, an is repredifiom P.D. Thacher, Phys.
Rev. 156, 957 (1967).

The crystals employed in the Thacher experiment (fig. 2) ekery pure, so that the scattering
from defects was negligible. Therefore, at low temperatuse can clearly see the effect of crys-
tal size, which determines the mean free patln assessing the data, we have to acknowledge
that, above- 10 K something starts scattering the phonons more than theatbgmindaries, and
this can be nothing other than other phonons.

However,we cannot simply assume that the mean free path is inverselyrgportional to
the total density of phonons as it would seem logical. It is easy to see that this woule giv
a completely wrong temperature dependence. In fact, in #i®/® model, the low-temperature
phonon density scales liKE® (like the specific heat), so we would géf = const. We should
therefore expect the thermal conductivity to have a “platea” at the point where the phonon
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mean free path becomes smaller than the crystal sizeOne way to reproduce the data is to
introduce alow-energy cutoff for the phonons that contribute to reducing the mean frel. pat
Phonons below this energy cut-off will be ineffective. Thi®ounts to introduce a “density of
effective phonons” (effective in reducing the mean freéhpathe total and “effective” phonon
densities in the Debye model are:

T 3 Op/T 2
nPh = 3n <—) / dx *
@D 0 6'“”—1
T \3 [€n/T 2
n];l}f = 3n|— / o
@D O¢/T € —1

(46)
where© is the cut-off temperature, and, as we shall see, is a signifitaction of room tem-

perature. At low temperatures,> 1 and we can ignore the additive terai in the denominator
and (left as an exercise) we obtain

ni’;ﬁf o e~ Oc/T (©c/T + 1)2 ~ e Oc/T (@C/T)2 47)

In other words

With the introduction of a cut-off frequency, the number of “ effective” phonons grows
exponentially with temperature in the relevant low-tempeiature range.

With the correct parameters, it is easy to see that the fomatiform in eq. 47, combined “in
parallel” with the constant mean free path from defects amolaries, will produce the observed
peak in the thermal conductivity. In fact, the data in fig. @ Aitedquantitatively with slightly
more complex but analogous expression.

We still have to justify the introduction of the low-energyteff. Before doing that, let us take
a brief look at the high-temperature thermal conductivity.

4.2.1 High-temperature phonon thermal conductivity

At high temperatures, the total number of phonons becaméswhile the specific heat saturates
(Dulong-Petit law). Therefore, one can easily predict that

At high temperatures, the thermal conductivity should decease ad /7.

16



This is in fact confirmed by experimental data. in fag¥! o 1/7* wherexz is usually between
one and two. The discrepancy is an indication thett all phonons are equally effective in
reducing the mean free path for entropy transfer.

4.2.2 Umklapp processes and low-energy cut-off

The results of the previous section, and the last genetalsant in particular, can be understood
by the fact that

Only unklapp processes can bring about the release of entrgpand the attainment of
thermal equilibrium.

This can be simply understood by looking again at the diagndig. 1. Phonons that transfer en-
tropy from77 to 75 will carry a net crystal momentum, whereas phonons in theeapailibrium
willhave ) . k; =0

Since normal processes conserve crystal momentum exactligey can never restore a ther-
mal equilibrium configuration of crystal momenta.

The low-energy cut-off arises naturally from the fact thalyounklapp processes can reduce the
mean free path. In fact, simple kinematics accounting fergimultaneous energy and crystal
momentum conservation (the latter to within a non-zero Rtimg imposes that

The crystal momentum ofall the phonons involved in an umklapp process must be a sig-
nificant fraction of a non-zero reciprocal lattice vector. This means also that their energy
must be a significant fraction of the Debye energy.

This will be seen better in the following section.

4.2.3 Anharmonicity and phonon “collision” processes

in order to understand the kinematics of normal and umklappgsses, it is useful to think of
them as phonon “collisions”. The justification for this istmomplex but goes beyond the scope
of this lecture (for more detail, see Ashcroft and Mermin gdpecially Appendices L,M and O.
In essence, one writes a perturbative anharmonic Hansliainiterms of the phonon raising and
lowering operators.

e The harmonic part only contains the phonon counting opesaigk)a,(k), which is read as
the distruction of a single phonon of brancland momentunk followed by the creation
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Figure 3: Multi-phonon processes enabled by cubic — (a) ae-(and quartic —(c), (d) and
(f) — terms in the Hamiltonian.

of the same phonon.

e The cubic term contains terms of the type (ki)a!_(k2)as, (ks) (process (a) in fig. 3) and
al (ki)as, (ko)as, (ks), where the three crystal momenta are bound by conservatiem-o
ergy and momentum — for instance for (a):

ki, = kot+ks+ K
Wsy (kl) = Wsy (k2) + Wsy (k3) (48)

e The quartic term contains terms of the tygie(k; )al, (k2)al, (ks)as, (ks) (process (c)), etc.,
where a conservation law similar to eq. 48 holds for the foystal momenta.

It is important to understand that the conservation laws as n eq. 48 (particularly for the
cubic term) are very restrictive, and, for acoustic phononsonly allow processes near the
zone boundary .

For example, in 1 dimension and with a linear dispersios- ck, the only allowed cubic (a)
process would be
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for which the incoming phonon is exactly at the zone bound&he deviation from linear dis-
persion and the higher dimensionality lift this strict carmh, but 3-phonon acoustic collisions
remain restricted to the outer part of the Brillouin zoneui=phonon collisions are less restricted,
but are also less likely (at least at low temperatures), elhdary a low-energy cut-off.
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5 Appendix |: The pressure of the phonon gas

Our starting point for the calculation of the pressure of phenon gas is the Helmholtz free
energy, defined as:

F=U-TS (50)

We recall thatF’ is the appropriate thermodynamic potential to calculatentjties at constant
volume and temperature. Remembering that

dU = —PdV +TdS
05\ _ 1 (0
or), ~ T\ar),
dF = —PdV — SdT
oOF
p _ _(9F 51
(aV)T 1)

we can write the following expression for the pressure ofpthenon gas:

0 Tdar o )
P=—r [U—T/O . aT/U(T,V)} (52)

where the integral term of eq. 52 is tleetropy, (second line of eq. 51). Thenergy of the
phonon gas is{ = 1/kgT):

19



1 hws(k) 7
U:—kZhws(k)+kZW:Uo+U(T) (53)
where we have separated out the zero point energy, whichradetepend on temperature and

does not therefore contribute to the integral in eq. 52. We focus on the integral term:

Tar o -,
I=T /0 = o U(T) (54)

To solve it, we introduce the variahleas:

r = Bhws(k) (55)

whence

arr- - do

T’ o !

g kg 5 0

T~ hwy(k)' Or (56)
leading to

I= x/x dx'x’i[j(x') (57)

I ox!

We can integrate by parts the limit a (T=0) yields zero because we removed the zero-point
energy from/):

~ Y n_F r /M, 1
I:U(x)—;/oode(x)—U(x) ﬁ/oodxe’”—l (58)
By writing
0 Owi(k) 0
v = ""ov e (59)
we find
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oI  0U(z) ,dwik)o [ , 1 U@  owl(k) 1
ov. - oV L ov ax/oodxew—1_ ov h oV er—1 (60)
We can now reconstruct eq. 52:
) Tar o ) oy  Ows(k) 1
P__W[U_T/O TfaT'U(T’V)]__av_h vV er—1 (61)
or also
0 |1 Ows (k) 1
=~ igs:nws(k) - ; (—h e ) e T (62)
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